Advertisement

Vegetos

pp 1–11 | Cite as

In vitro regeneration competency of Crataeva nurvala (Buch Ham) callus

  • Mafatlal M. KherEmail author
  • M. NatarajEmail author
Research Articles
  • 4 Downloads

Abstract

Crataeva nurvala (Buch Ham) is a medicinally important tree. The root and stem bark of the tree are the main ingredients of various pharmaceutical products. The use of natural propagation strategies for C. nurvala has proven difficult. In this study, callus cultures were established from leaflets, petal, petiole, internodes and nodes on Murashige and Skoog’s (MS) medium supplemented with 2 mg L−1 of 2,4-dichlorophenoxyacetic acid and 0.4 mg L−1 kinetin. Transfer of calli on MS supplemented with 0.1-0.5 mg L−1 of kinetin, N6-benzyl adenine, or thidiazuron or N6-(2-isopentenyl) adenine resulted in root and shoot bud differentiation and somatic embryogenesis. In vitro regenerated shoots were successfully rooted on half-strength MS medium containing 0.5 mg L−1 α- naphthalene acetic acid. Somatic embryos continued their differentiation and maturation and converted into plantlets on medium without plant growth regulators. The regeneration response, the type of morphogenesis, varied with callus source and plant growth regulators. Micropropagated plantlets of C. nurvala successfully acclimatized in natural condition.

Keywords

Explants Organogenesis Somatic embryogenesis Thidiazuron 

Notes

Author contributions

All authors contributed equally in conceptualization, design, experimentation and presentation of data.

Compliance with ethical standards

Conflict of interest

The authors affirm no conflict of interest.

References

  1. Agarwal K, Varma R (2015) Ethnobotanical study of antilithic plants of Bhopal district. J Ethnopharmacol 174:17–24.  https://doi.org/10.1016/j.jep.2015.08.003 CrossRefPubMedGoogle Scholar
  2. Aziz AF, Yusuf NA, Tan BC, Khalid N (2017) Prolonged culture of Boesenbergia rotunda cells reveals decreased growth and shoot regeneration capacity. Plant Cell Tissue Organ Cult 130:25–36.  https://doi.org/10.1007/s11240-017-1201-z CrossRefGoogle Scholar
  3. Babbar SB, Walia N, Kaur A (2009) Large-scale in vitro multiplication of Crataeva nurvala. In: Jain SM, Saxena PK (eds) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Methods in molecular biology (methods and protocols), vol 547. Humana Press, Totowa, NJ, pp 61–70.  https://doi.org/10.1007/978-1-60327-287-2_5 CrossRefGoogle Scholar
  4. Barata AM, Rocha F, Lopes V, Carvalho AM (2016) Conservation and sustainable uses of medicinal and aromatic plants genetic resources on the worldwide for human welfare. Ind Crops Prod 88:8–11.  https://doi.org/10.1016/j.indcrop.2016.02.035 CrossRefGoogle Scholar
  5. Basu MJ, Ramanathan R, Yogananth N, Baburaj S (2009) Micropropagation of Crataeva religiosa Hook.f. & Thoms. Curr Trendzs Biotechnol Pharm 3:287–290Google Scholar
  6. Bhandari P, Dhar M, Sharma V (1951) Chemical constituents of the root bark of Crataeva nurvala Ham. J Sci Ind Res 10:195–196Google Scholar
  7. Bhattacharjee S (2012) The language of reactive oxygen species signaling in plants. J Bot 2012:1–22.  https://doi.org/10.1155/2012/985298 CrossRefGoogle Scholar
  8. Bhattacharjee A, Shashidhara SC, Aswathanarayana (2012) Phytochemical and ethno-pharmacological profile of Crataeva nurvala Buch-Ham (Varuna): a review. Asian Pac J Trop Biomed 2:S1162–S1168.  https://doi.org/10.1016/S2221-1691(12)60379-7 CrossRefGoogle Scholar
  9. Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice, a revised. Elsevier, AmsterdamGoogle Scholar
  10. Bopana N, Saxena S (2008) In vitro propagation of a high value medicinal plant: Asparagus racemosus Willd. Vitro Cell Dev Biol Plant 44:525–532.  https://doi.org/10.1007/s11627-008-9137-y CrossRefGoogle Scholar
  11. Bopana N, Saxena S (2009) In vitro regeneration of clonally uniform plants of Crataeva magna: a high value medicinal tree by axillary branching method. New For 38:53–65.  https://doi.org/10.1007/s11056-009-9131-1 CrossRefGoogle Scholar
  12. Dewir YH, Nurmansyah Naidoo Y, Teixeira da Silva JA (2018) Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep 37:1451–1470.  https://doi.org/10.1007/s00299-018-2326-1 CrossRefPubMedGoogle Scholar
  13. Driver JA, Suttle GRL (1987) Nursery handling of propagules. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Forestry sciences, vol 24–26. Springer, Dordrecht, pp 320–335CrossRefGoogle Scholar
  14. Guan Y, Li S-G, Fan X-F, Su Z-H (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 07:1–12.  https://doi.org/10.3389/fpls.2016.00938 CrossRefGoogle Scholar
  15. Himalaya Drug company (2019) Three leaved caper. http://www.himalayawellness.com/herbfinder/crataeva-nurvala.htm. Accessed 28 July 2019
  16. Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119.  https://doi.org/10.1007/BF01983223 CrossRefGoogle Scholar
  17. Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173.  https://doi.org/10.1105/tpc.113.116053 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ikeuchi M, Favero DS, Sakamoto Y et al (2019) Molecular mechanisms of plant regeneration. Annu Rev Plant Biol 70:377–406.  https://doi.org/10.1146/annurev-arplant-050718-100434 CrossRefPubMedGoogle Scholar
  19. Inamdar JA, Nataraj M, Mohan JSS, Subramanian RB (1990) Somatic embryogenesis from callus cultures of Crataeva nurvala Buch Ham. Phytomorphology 40:319–322Google Scholar
  20. Kasote DM, Jagtap SD, Thapa D et al (2017) Herbal remedies for urinary stones used in India and China: a review. J Ethnopharmacol 203:55–68.  https://doi.org/10.1016/j.jep.2017.03.038 CrossRefPubMedGoogle Scholar
  21. Kher MM, Nataraj M (2017) Micropropagation of Combretum ovalifolium Roxb.: a medicinally important plant. Rend Lincei 28:519–527.  https://doi.org/10.1007/s12210-017-0625-z CrossRefGoogle Scholar
  22. Kher MM, Nataraj M (2019) Direct somatic embryogenesis and shoot regeneration from leaves and internodes of Pluchea lanceolata (DC.) C.B. Clarke. Vitro Cell Dev Biol Plant.  https://doi.org/10.1007/s11627-019-10016-4 CrossRefGoogle Scholar
  23. Kher MM, Nataraj M, Teixeira da Silva JA (2016) Micropropagation of Crataeva L. species. Rend Lincei 27:157–167.  https://doi.org/10.1007/s12210-015-0478-2 CrossRefGoogle Scholar
  24. Kichu M, Malewska T, Akter K et al (2015) An ethnobotanical study of medicinal plants of Chungtia village, Nagaland, India. J Ethnopharmacol 166:5–17.  https://doi.org/10.1016/j.jep.2015.02.053 CrossRefPubMedGoogle Scholar
  25. Konar S, Adhikari S, Karmakar J et al (2019) Evaluation of subculture ages on organogenic response from root callus and SPAR based genetic fidelity assessment in the regenerants of Hibiscus sabdariffa L. Ind Crops Prod 135:321–329.  https://doi.org/10.1016/j.indcrop.2019.04.018 CrossRefGoogle Scholar
  26. Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233.  https://doi.org/10.1016/j.fbp.2010.04.008 CrossRefGoogle Scholar
  27. Kuvar NA, Lambole VB, Shah BN et al (2013) A valuable medicinal plant- Crataeva nurvala. Pharma Sci Monit 4:210–227Google Scholar
  28. Lelu-Walter MA, Gautier F, Eliášová K et al (2018) High gellan gum concentration and secondary somatic embryogenesis: two key factors to improve somatic embryo development in Pseudotsuga menziesii [Mirb.]. Plant Cell Tissue Organ Cult 132:137–155.  https://doi.org/10.1007/s11240-017-1318-0 CrossRefGoogle Scholar
  29. Lu C (1993) The use of thidiazuron in tissue culture. Vitro Cell Dev Biol Plant 29:92–96.  https://doi.org/10.1007/BF02632259 CrossRefGoogle Scholar
  30. Mithila J, Hall JC, Victor JMR, Saxena PK (2003) Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.). Plant Cell Rep 21:408–414.  https://doi.org/10.1007/s00299-002-0544-y CrossRefPubMedGoogle Scholar
  31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  32. Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. Vitro Cell Dev Biol Plant 34:267–275.  https://doi.org/10.1007/BF02822732 CrossRefGoogle Scholar
  33. Nataraj M (1992) Crataeva nurvala Buch. Ham. PhD Thesis “In vitro studies in three angiosperm taxa.” Sardar Patel University, Vallabh Vidyanagar, pp 14–58Google Scholar
  34. Nataraj M, Padhya MA (1988) Insect gall formation in Crataeva nurvala Buch Ham. Proc Natl Acad Sci India Sect B Biol Sci 58:87–88Google Scholar
  35. Northmore JA, Sigurdson D, Schoor S et al (2016) Thidiazuron induces high-frequency indirect shoot organogenesis of Bienertia sinuspersici: a single-cell C4 species. Plant Cell Tissue Organ Cult 126:141–151.  https://doi.org/10.1007/s11240-016-0984-7 CrossRefGoogle Scholar
  36. Panwar S, Vashistha BD (2008) Effect of some auxins on regenerative potential of various parts of Crataeva nurvala Buch.-Ham. Ann Agri Bio Res 13:103–113Google Scholar
  37. Patyal HC (1969) Significance of “Varaṇa-” (Crataeva roxburghii) in the Veda. Oriens 21(22):300–306CrossRefGoogle Scholar
  38. Phondani PC, Bhatt ID, Negi VS et al (2016) Promoting medicinal plants cultivation as a tool for biodiversity conservation and livelihood enhancement in Indian Himalaya. J Asia-Pacific Biodivers 9:39–46.  https://doi.org/10.1016/j.japb.2015.12.001 CrossRefGoogle Scholar
  39. Piovan A, Caniato R, Cappelletti EM, Filippini R (2010) Organogenesis from shoot segments and via callus of endangered Kosteletzkya pentacarpos (L.) Ledeb. Plant Cell Tissue Organ Cult 100:309–315.  https://doi.org/10.1007/s11240-009-9652-5 CrossRefGoogle Scholar
  40. Poonam K, Singh GS (2009) Ethnobotanical study of medicinal plants used by the Taungya community in Terai Arc Landscape, India. J Ethnopharmacol 123:167–176.  https://doi.org/10.1016/j.jep.2009.02.037 CrossRefPubMedGoogle Scholar
  41. Prakash A, Kumari S, Utkarshini et al (2014) Direct and callus mediated regeneration from nodal and internodal segment of Crataeva religiosa G. Forst. var nurvala (Buch.-Ham.) Hook. f. & Thomson. Indian J Biotechnol 13:263–267Google Scholar
  42. Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107.  https://doi.org/10.1007/BF00022463 CrossRefGoogle Scholar
  43. Rajeswara Rao BR (2016) Genetic diversity, genetic erosion, conservation of genetic resources, and cultivation of medicinal plants. In: Ahuja M, Jain SM (eds) Genetic diversity and erosion in plants. Sustainable development and biodiversity, vol 8. Springer, Cham, pp 357–407.  https://doi.org/10.1007/978-3-319-25954-3_11 CrossRefGoogle Scholar
  44. Rathore MS, Paliwal N, Anand KGV, Agarwal PK (2015) Somatic embryogenesis and in vitro plantlet regeneration in Salicornia brachiata Roxb. Plant Cell Tissue Organ Cult 120:355–360.  https://doi.org/10.1007/s11240-014-0571-8 CrossRefGoogle Scholar
  45. Revathi J, Manokari M, Latha R et al (2019) In vitro propagation, in vitro flowering, ex vitro root regeneration and foliar micro-morphological analysis of Hedyotis biflora (Linn) Lam. Vegetos.  https://doi.org/10.1007/s42535-019-00066-9 CrossRefGoogle Scholar
  46. Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18:91–120CrossRefGoogle Scholar
  47. Schoendorfer N, Sharp N, Seipel T et al (2018) Urox containing concentrated extracts of Crataeva nurvala stem bark, Equisetum arvense stem and Lindera aggregata root, in the treatment of symptoms of overactive bladder and urinary incontinence: a phase 2, randomised, double-blind placebo controlled tri. BMC Complement Altern Med 18:1–11.  https://doi.org/10.1186/s12906-018-2101-4 CrossRefGoogle Scholar
  48. Shikov AN, Pozharitskaya ON, Makarov VG et al (2014) Medicinal plants of the Russian Pharmacopoeia; their history and applications. J Ethnopharmacol 154:481–536.  https://doi.org/10.1016/j.jep.2014.04.007 CrossRefPubMedGoogle Scholar
  49. Shirin F, Maravi S (2006) Clonal propagation of an important medicinal tree Crataeva nurvala through enhanced axillary branching. J Herbs Spices Med Plants 12:165–174CrossRefGoogle Scholar
  50. Singh A, Singh PK (2009) An ethnobotanical study of medicinal plants in Chandauli district of Uttar Pradesh, India. J Ethnopharmacol 121:324–329.  https://doi.org/10.1016/j.jep.2008.10.018 CrossRefPubMedGoogle Scholar
  51. Soni V (2009) Threatened wild medicinal plants: who cares? Curr Sci 96:875Google Scholar
  52. Sugimoto K, Temman H, Kadokura S, Matsunaga S (2019) To regenerate or not to regenerate: factors that drive plant regeneration. Curr Opin Plant Biol 47:138–150.  https://doi.org/10.1016/j.pbi.2018.12.002 CrossRefPubMedGoogle Scholar
  53. Walia N, Sinha S, Babbar SB (2003) Micropropagation of Crataeva nurvala. Biol Plant 46:181–185.  https://doi.org/10.1023/A:1022882006682 CrossRefGoogle Scholar
  54. Walia N, Kaur A, Babbar SB (2007) An efficient, in vitro cyclic production of shoots from adult trees of Crataeva nurvala Buch. Ham. Plant Cell Rep 26:277–284.  https://doi.org/10.1007/s00299-006-0239-x CrossRefPubMedGoogle Scholar
  55. Yadav AS, Gupta SK (2006) Effect of micro-environment and human disturbance on the diversity of woody species in the Sariska tiger project in India. For Ecol Manage 225:178–189.  https://doi.org/10.1016/j.foreco.2005.12.058 CrossRefGoogle Scholar
  56. Yuan JL, Yue JJ, Wu XL, Gu XP (2013) Protocol for callus induction and somatic embryogenesis in Moso bamboo. PLoS One 8:8–13.  https://doi.org/10.1371/journal.pone.0081954 CrossRefGoogle Scholar

Copyright information

© Society for Plant Research 2019

Authors and Affiliations

  1. 1.P.G. Department of BiosciencesSardar Patel UniversityVallabh VidyanagarIndia
  2. 2.School of ScienceGSFC UniversityVadodaraIndia

Personalised recommendations