Advertisement

Vegetos

, Volume 32, Issue 2, pp 209–215 | Cite as

Trichoderma asperellum increases crop yield and fruit weight of blackberry (Rubus glaucus) under subtropical Andean conditions

  • William Viera
  • Michelle NoboaEmail author
  • Aníbal Martínez
  • Francisco Báez
  • Rosendo Jácome
  • Lorena Medina
  • Trevor Jackson
Research Articles
  • 10 Downloads

Abstract

Mora de Castilla (Rubus glaucus, Benth), also called blackberry, is grown mainly in Colombia and Ecuador. This fruit crop is of economic importance for farmers in the Province of Tungurahua (Ecuador). In this field research, the effect of Trichoderma asperellum (1.53 × 109 CFU/g) inoculation was assessed on crop yield and fruit weight at three production sites (Huachi Grande, Píllaro and Tisaleo in Ecuador). Factorial experiments were conducted consisting of treatments of 0.18 g of a commercial product per plant and a second uninoculated treatment). The product was applied eight times per month and the weekly fruit harvest recorded in each of the eight applications. The inoculation of T. asperellum had a significant effect on crop yield and fruit weight: yield was greatest in Tisaleo (5350 g/plant) with T. asperellum treatment, which was increased by 17% over the uninoculated witness (4447 g/plant). Fruit weight in Píllaro was improved from 5.36 g/fruit for the uninoculated control to 6.04 g/fruit (12.6%). Additionally, the organic matter (OM) content was correlated with the fungal population in the soil. Tisaleo had the highest OM (4%) and the highest yield in this study. In conclusion, the inoculation of T. asperellum in the soil positively affected crop productivity.

Keywords

Berries Fungus Inoculation Productivity Soil 

Notes

Acknowledgements

The authors thank the Project “Biocontrol systems for sustainable agriculture, Ecuador” funded by MFAT-New Zealand for the support of this research. Thanks to Dr. H.R. Kutcher from the University of Saskatchewan for editing the manuscript.

References

  1. Altintas S, Bal U (2008) Effects of the commercial product based on Trichoderma harzianum on plant, bulb and yield characteristics of onion. Sci Hortic 116(2):219–222Google Scholar
  2. Bailey BA, Lumsden RD (1998) Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol II. Taylor and Francis, London, pp 185–204Google Scholar
  3. Bal U, Altintas S (2006) A positive side effect from Trichoderma harzianum, the biological control agent: increased yield in vegetable crops. Environ Protoc Ecol 7(2):383–387Google Scholar
  4. Barrera VH, Alwang J, Andrango G, Domínguez Andrade JM, Escudero L, Martínez A, Arévalo J (2017) La cadena de valor de la mora y sus impactos en la Región Andina del Ecuador. ARCOIRIS Producciones Gráficas, QuitoGoogle Scholar
  5. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59(1):39–46Google Scholar
  6. Brito B, Montalvo D, Freire V, Vásquez W, Martínez A (2016) Calidad en la cosecha, poscosecha y comercialización. In: Galarza D, Garcés S, Velásquez J, Sánchez V, Zambrano J (eds) El cultivo de la mora en el Ecuador. Imprenta San Mateo, Quito, pp 137–164Google Scholar
  7. Cardona WA (2017) Requerimientos nutricionales (nitrógeno, fósforo, potasio y calcio) en etapa vegetativa y reproductiva de un cultivo de mora (Rubus glaucus Benth.), ubicado en el municipio de Silvania (Cundinamarca) (Doctoral dissertation, Universidad Nacional de Colombia-Sede Bogotá)Google Scholar
  8. Chagas AF, Borges LF, Oliveira L, Oliveira JC (2019) Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. Afr J Agric Res 14(5):263–271Google Scholar
  9. Cotxarrera L, Trillas MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol Biochem 34(1):467–476Google Scholar
  10. Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopath 94(2):147–153Google Scholar
  11. Hatch WR, Ott WL (1968) Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. Anal Chem 40(14):2085–2087Google Scholar
  12. Kafkafi U, Xu G, Imas P, Magen H, Tarchitzky J (2001) Potassium and chloride in crops and soils: the role of potassium chloride fertilizer in crop nutrition. IPI Research Topics No. 22. Int Potash Inst, BasileaGoogle Scholar
  13. Kowalska J (2011) Effects of Trichoderma asperellum [t1] on Botrytis cinerea [Pers.: fr.], growth and yield of organic strawberry. Acta Sci Pol 10(4):107–114Google Scholar
  14. Lumsden RD, Carter JP, Whipps JM, Lynch JM (1990) Comparison of biomass and viable propagule measurements in the antagonism of Trichoderma harzianum against Pythium ultimum. Soil Biol Biochem 22(2):187–194Google Scholar
  15. Lynch JM, Wilson KL, Ousley MA, Whipps JM (1991) Response of lettuce to Trichoderma treatment. Lett Appl Microbiol 12(2):59–61Google Scholar
  16. Ma T, Zuazaga G (1942) Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method. Ind Eng Chem Anal Edit 14(3):280–282Google Scholar
  17. MADR Ministerio de agricultura y desarrollo rural (2015) Indicadores de apoyo. In: Cadena productiva nacional de la mora. Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/Mora/Documentos/002%20-%20Cifras%20Sectoriales/Cifras%20Sectoriales%20–%202015%20Marzo.pdf. Accessed 19 Dec 2017
  18. Monte E (2001) Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol 4(1):1–4Google Scholar
  19. Morillo A, Morillo Y, Zamorano A, Vásquez H, Muñoz J (2005) Caracterización molecular con microsatélites aleatorios RAM de la Colección de mora Rubus spp. de la Universidad Nacional de Colombia, Sede Palmira. Acta Agronom 54(2):15–24Google Scholar
  20. Poldma P, Albrecht A, Merivee A (2002) Influence of fungus Trichoderma viride on the yield of cucumber in greenhouse conditions. In: Proceedings of the Conference on Scientific Aspects of Organic Farming, Jelgava, Latvia. 21–22 March 2002, pp 176–180Google Scholar
  21. Porras M, Barrau C, Romero F (2007) Effects of soil solarization and Trichoderma on strawberry production. Crop Prot 6(5):782–787Google Scholar
  22. Queiroz PR, Valadarez MC, Inglis PW (2004) Survival in soil and detection of co-transformed Trichoderma harzianum by nested PCR. Pesq Agropec Bras 39(4):403–405Google Scholar
  23. Ridout CJ, Coley-Smith JR, Lynch JM (1986) Enzyme activity and electrophoretic profile of extracellular protein induced in Trichoderma spp. by cell walls of Rhizoctonia solani. Microbiology 132(8):2345–2352Google Scholar
  24. Rudresh DL, Shivaprakash MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium). Appl Soil Ecol 28(2):139–146Google Scholar
  25. Sotomayor A, Gonzáles A, Cho K, Villavicencio Jackson T, Viera W (2019) Effect of the application of microorganisms on the nutrient absorption in avocado (Persea americana Mill.) seedlings. J Korean Soc Int Agric 31(1):17–24Google Scholar
  26. Vargas WA, Crutcher FK, Kenerley CM (2011) Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. New Phytopat 189(3):777–789Google Scholar
  27. Viera W, Noboa M, Bermeo J, Báez F, Jackson T (2018) Quality parametres of four types of formulations based on Trichoderma asperellum and Purpuricillium lilacinum. Enfoque UTE 9(4):145–153Google Scholar
  28. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant–pathogen interactions. Soil Biol and Biochem 40(1):1–10Google Scholar
  29. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38Google Scholar
  30. Windham MT, Elad Y, Baker R (1986) A mechanism for increased plant growth by Trichoderma spp. Phytopath 76:518–521Google Scholar
  31. Zhao L, Zang Y (2015) Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J Integr Agric 14(8):1588–1597Google Scholar

Copyright information

© Society for Plant Research 2019

Authors and Affiliations

  1. 1.Instituto Nacional de Investigaciones AgropecuariasQuitoEcuador
  2. 2.Instituto Interamericano de Cooperación para la AgriculturaQuitoEcuador
  3. 3.AgResearchChristchurchNew Zealand

Personalised recommendations