Advertisement

Vegetos

, Volume 32, Issue 1, pp 92–97 | Cite as

Extremely diverse structural organization in the complete mitochondrial genome of seedless Phoenix dactylifera L

  • Pritesh P. Bhatt
  • Vrinda S. ThakerEmail author
Research Articles
  • 2 Downloads

Abstract

Mitochondrial genome of seedless (mutant) variety of Phoenix dactylifera is analyzed to understand the probable reason for seedless condition. The size of the genome is 585,493 bp long which is 129,508 bp shorter compared to the normal genome and demonstrate significantly higher rate of nucleotide loss. The loss is evident in coding and non-coding regions. Missing of all rRNA genes and other three genes, i.e., rps14, rps13, rps19 is observed. Total 2726 SNPs are recorded, showed 80.9% identity with the normal genome. The ratio of nonsynonymous (dN) synonymous (dS) substitution (dN/dS) is more than one for nad7, nad1, ccMb, ccmC, cob, matR, matB suggest adaptive selection while less than one for cox2 suggest strong selective pressure on this gene and reduction in size may be start of its transfer to nucleus. Such variations may play an important role in seedless condition is discussed.

Keywords

Mitochondrial genome Phoenix dactylifera Seedless mutant Nucleotide variations SNPs 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

42535_2019_10_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. Al-Khalifah N, Askari E (2003) Molecular phylogeny of date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia by DNA fingerprinting. Theor Appl Genet 107:1266–1270CrossRefGoogle Scholar
  2. Al-Shahib W, Marshall RJ (2003) The fruit of the date palm: its possible use as the best food for the future? Int J Food Sci Nutr 54:247–259CrossRefGoogle Scholar
  3. Baliga MS, Baliga BRV, Kandathil SM, Bhat HP, Vayalil PK (2011) A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res Int 44:1812–1822CrossRefGoogle Scholar
  4. Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Plant Sci 15:11–22CrossRefGoogle Scholar
  5. Chen Z et al (2017) Entire nucleotide sequences of Gossypium raimondii and G. arboreum mitochondrial genomes revealed A-genome species as cytoplasmic donor of the allotetraploid species. Plant Biol 19:484–493CrossRefGoogle Scholar
  6. Cohen Y, Korchinsky R, Tripler E (2004) Flower abnormalities cause abnormal fruit setting in tissue culture-propagated date palm (Phoenix dactylifera L.). J Hortic Sci Biotechnol 79:1007–1013CrossRefGoogle Scholar
  7. Cuenca A, Ross TG, Graham SW, Barrett CF, Davis JI, Seberg O, Petersen G (2016) Localized retroprocessing as a model of intron loss in the plant mitochondrial genome. Genome Biol Evol 8:2176–2189CrossRefGoogle Scholar
  8. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403CrossRefGoogle Scholar
  9. Galtier N (2011) The intriguing evolutionary dynamics of plant mitochondrial DNA. BMC Biol 9:61CrossRefGoogle Scholar
  10. Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403CrossRefGoogle Scholar
  11. Gray MW et al (1998) Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res 26:865–878CrossRefGoogle Scholar
  12. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481CrossRefGoogle Scholar
  13. Grewe F, Edger PP, Keren I, Sultan L, Pires JC, Ostersetzer-Biran O, Mower JP (2014) Comparative analysis of 11 Brassicales mitochondrial genomes and the mitochondrial transcriptome of Brassica oleracea. Mitochondrion 19:135–143CrossRefGoogle Scholar
  14. Gualberto JM, Newton KJ (2017) Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu Rev Plant Biol 68:225–252CrossRefGoogle Scholar
  15. Gugerli F, Sperisen C, Büchler U, Brunner I, Brodbeck S, Palmer JD, Qiu Y-L (2001) The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Mol Phylogenet Evol 21:167–175CrossRefGoogle Scholar
  16. Hepburn NJ, Schmidt DW, Mower JP (2012) Loss of two introns from the Magnolia tripetala mitochondrial cox2 gene implicates horizontal gene transfer and gene conversion as a novel mechanism of intron loss. Mol Biol Evol 29:3111–3120CrossRefGoogle Scholar
  17. Joly S, Brouillet L, Bruneau A (2001) Phylogenetic implications of the multiple losses of the mitochondrial coxII.i3 intron in the angiosperms. Int J Plant Sci 162:359–373CrossRefGoogle Scholar
  18. Kitazaki K, Kubo T (2010) Cost of having the largest mitochondrial genome: evolutionary mechanism of plant mitochondrial genome. J Bot 2010:12Google Scholar
  19. Kudla J, Albertazzi F, Blazević D, Hermann M, Bock R (2002) Loss of the mitochondrial cox2 intron 1 in a family of monocotyledonous plants and utilization of mitochondrial intron sequences for the construction of a nuclear intron. Mol Genet Genomics 267:223–230CrossRefGoogle Scholar
  20. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  21. Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  22. Liu Y, Xue J-Y, Wang B, Li L, Qiu Y-L (2011) The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: dynamic and conservative evolution. PLoS One 6:e25836CrossRefGoogle Scholar
  23. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581CrossRefGoogle Scholar
  24. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefGoogle Scholar
  25. Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD (2007) Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 7:135CrossRefGoogle Scholar
  26. Mower JP, Sloan DB, Alverson AJ (2012) Plant mitochondrial genome diversity: the genomics revolution. In: Wendel JF, Greilhuber J, Dolezel J, Leitch IJ (eds) Plant genome diversity volume 1: plant genomes, their residents, and their evolutionary dynamics. Springer, Vienna, pp 123–144CrossRefGoogle Scholar
  27. Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu Y-L, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci 97:6960–6966CrossRefGoogle Scholar
  28. Petersen G et al (2017) Mitochondrial genome evolution in Alismatales: size reduction and extensive loss of ribosomal protein genes. PLoS One 12:e0177606CrossRefGoogle Scholar
  29. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302CrossRefGoogle Scholar
  30. Satoh M, Kubo T, Nishizawa S, Estiati A, Itchoda N, Mikami T (2004) The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs. Mol Genet Genomics 272:247–256CrossRefGoogle Scholar
  31. Shi C, Hu N, Huang H, Gao J, Zhao Y-J, Gao L-Z (2012) An improved chloroplast DNA extraction procedure for whole plastid genome sequencing. PLoS One 7:e31468CrossRefGoogle Scholar
  32. Sloan DB, Müller K, McCauley DE, Taylor DR, Štorchová H (2012) Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol 196:1228–1239CrossRefGoogle Scholar
  33. Takenaka M, Verbitskiy D, van der Merwe JA, Zehrmann A, Brennicke A (2008) The process of RNA editing in plant mitochondria. Mitochondrion 8:35–46CrossRefGoogle Scholar
  34. Tang M et al (2015) Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes. BMC genomics 16:770CrossRefGoogle Scholar
  35. Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S (2017) GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45:W6–W11CrossRefGoogle Scholar
  36. Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci 84:9054–9058CrossRefGoogle Scholar
  37. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43CrossRefGoogle Scholar
  38. Zhang Z, Li J, Yu J (2006) Computing Ka and Ks with a consideration of unequal transitional substitutions. BMC Evol Biol 6:44CrossRefGoogle Scholar

Copyright information

© Society for Plant Research 2019

Authors and Affiliations

  1. 1.Department of BiosciencesSaurashtra UniversityRajkotIndia
  2. 2.Vimal Research Society for Agro Bio-tech and Cosmic PowersRajkotIndia

Personalised recommendations