Advertisement

Frontiers of Engineering Management

, Volume 6, Issue 1, pp 62–69 | Cite as

Solvability and thermal response of cellulose with different crystal configurations

  • Qian Chen
  • Kai Zheng
  • Qingtao Fan
  • Kun WangEmail author
  • Haiyan Yang
  • Jianxin Jiang
  • Shijie Liu
Research Article
  • 13 Downloads

Abstract

Cellulose is a biodegradable and renewable natural material that it is naturally resistant to breaking and modification. Moreover, the crystalline structure of cellulose is a major factor restricting its industrial utilization. In this study, cellulose polymorphs were prepared from natural cellulose, and their solvability and thermal response were investigated. Using liquid- and solid-state NMR signals, the distinct types and dissolving states of cellulose polymorphs were identified. The thermal behavior of the polymorphic forms of cellulose-d was also evaluated, and cellulose II exhibited the poorest thermal stability and a unique exothermic reaction.

Keywords

cellulose crystal structure thermal response XRD CP/MAS 13C NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashraf M T, Thomsen M H, Schmidt J E (2017). Hydrothermal pretreatment and enzymatic hydrolysis of mixed green and woody lignocellulosics from arid regions. Bioresource Technology, 238: 369–378CrossRefGoogle Scholar
  2. Balat M (2008). Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 30(7): 620–635Google Scholar
  3. Bertran M S, Dale B E (1986). Determination of cellulose accessibility by differential scanning calorimetry. Journal of Applied Polymer Science, 32(3): 4241–4253CrossRefGoogle Scholar
  4. Cai J, Liu Y, Zhang L (2006). Dilute solution properties of cellulose in LiOH/urea aqueous system. Journal of Polymer Science. Part B, Polymer Physics, 44(21): 3093–3101CrossRefGoogle Scholar
  5. Cai J, Zhang L N, Liu S L, Liu Y T, Xu X J, Chen X M, Chu B, Guo X L, Xu J, Cheng H, Han C C, Kuga S (2008). Dynamic self–assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules, 41(23): 9345–9351CrossRefGoogle Scholar
  6. Cai J, Zhang L N, Zhou J P, Li H, Chen H, Jin H M (2004). Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromolecular Rapid Communications, 25(17): 1558–1562CrossRefGoogle Scholar
  7. Chen J H, Wang K, Xu F, Sun R C (2014). Progress of preparing regenerated cellulose fibers using novel dissolution process. CIESC Journal, 65: 4213–4221Google Scholar
  8. Chen X, Chen J, You T, Wang K, Xu F (2015). Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydrate Polymers, 125: 85–91CrossRefGoogle Scholar
  9. Chen X M, Burger C, Fang D F, Ruan D, Zhang L N, Hsiao B S, Chu B (2006). X–ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer, 47 (8): 2839–2848CrossRefGoogle Scholar
  10. Cheng G, Varanasi P, Li C, Liu H, Melnichenko Y B, Simmons B A, Kent M S, Singh S (2011). Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules, 12(4): 933–941CrossRefGoogle Scholar
  11. Egal M, Budtova T, Navard P (2008). The dissolution of microcrystalline cellulose in sodium hydroxide–urea aqueous solutions. Cellulose (London, England), 15(3): 361–370Google Scholar
  12. Himmel ME, Ding S Y, Johnson D K, Adney WS, Nimlos MR, Brady J W, Foust T D (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813): 804–807CrossRefGoogle Scholar
  13. Huang H, Liu Y, Chao M A, Jiyou G U (2016). Research progress in the application of cellulose and its derivatives. Materials Review, 21: 75–82CrossRefGoogle Scholar
  14. Idström A, Schantz S, Sundberg J, Chmelka B F, Gatenholm P, Nordstierna L (2016). (13)C NMR assignments of regenerated cellulose from solid–state 2D NMR spectroscopy. Carbohydrate Polymers, 151: 480–487CrossRefGoogle Scholar
  15. Ishikawa A, Okano T, Sugiyama J (1997). Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer, 38(2): 463–468CrossRefGoogle Scholar
  16. Isogai A (1997). NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose (London, England), 4(2): 99–107MathSciNetGoogle Scholar
  17. Isogai A, Usuda M, Kato T, Uryu T, Atalla R H (1989). Solid–state CP/MAS carbon–13 NMR study of cellulose polymorphs. Macromolecules, 22(7): 3168–3172CrossRefGoogle Scholar
  18. Jeoh T, Ishizawa C I, Davis M F, Himmel M E, Adney W S, Johnson D K (2007). Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnology and Bioengineering, 98(1): 112–122CrossRefGoogle Scholar
  19. Jin F, Zhang J, Chen W, Fan Q, Bai Z (2012). Preparation and chiral recognition of new chiral stationary phases derived from cellulose microspheres. Wuhan University Journal of Natural Sciences, 17(3): 205–210CrossRefGoogle Scholar
  20. Jin H, Zha C, Gu L (2007). Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydrate Research, 342(6): 851–858CrossRefGoogle Scholar
  21. Junior J L P (2000). Effect of cellulose crystallinity on the progress of thermal oxidative degradation of paper. Journal of Applied Polymer Science, 78: 61–66CrossRefGoogle Scholar
  22. Kono H, Erata T, Takai M (2003). Complete assignment of the CP/MAS 13C NMR spectrum of cellulose IIII. Macromolecules, 36(10): 3589–3592CrossRefGoogle Scholar
  23. Kumar P, Barrett D M, Delwiche M J, Stroeve P (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48 (8): 3713–3729CrossRefGoogle Scholar
  24. Langan P, Nishiyama Y, Chanzy H (1999). A revised structure and hydrogen–bonding system in cellulose II from a neutron fiber diffraction analysis. Journal of the American Chemical Society, 121 (43): 9940–9946CrossRefGoogle Scholar
  25. Lennholm H, Larsson T, Iversen T (1994). Determination of cellulose I [alpha] and I[beta] in lignocellulosic materials. Carbohydrate Research, 261(1): 119–131CrossRefGoogle Scholar
  26. Liebert T, Heinze T, Edgar K J (2010). Cellulose solvents: For analysis, shaping and chemical modification. Journal of the American Chemical Society, 132: 17976–17976CrossRefGoogle Scholar
  27. Liitiä T, Maunu S L, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003). Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid–state NMR spectroscopic methods. Cellulose (London, England), 10(4): 307–316Google Scholar
  28. Lou Y R, Kanninen L, Kuisma T, Niklander J, Noon L A, Burks D, Urtti A, Yliperttula M (2014). The use of nanofibrillar cellulose hydrogel as a flexible three–dimensional model to culture human pluripotent stem cells. Stem Cells and Development, 23(4): 380–392CrossRefGoogle Scholar
  29. Luo X, Zhang L (2010). Immobilization of penicillin G acylase in epoxy–activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities. Biomacromolecules, 11(11): 2896–2903CrossRefGoogle Scholar
  30. Madaeni S S, Heidary F (2011). Improving separation capability of regenerated cellulose ultrafiltration membrane by surface modification. Applied Surface Science, 257(11): 4870–4876CrossRefGoogle Scholar
  31. Moigne N L, Navard P (2010). Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose (London, England), 17(1): 31–45Google Scholar
  32. Mori T, Chikayama E, Tsuboi Y, Ishida N, Shisa N, Noritake Y, Moriya S, Kikuchi J (2012). Exploring the conformational space of amorphous cellulose using NMR chemical shifts. Carbohydrate Polymers, 90(3): 1197–1203CrossRefGoogle Scholar
  33. Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6): 673–686CrossRefGoogle Scholar
  34. Nishino T, Matsuda I, Hirao K (2004). All–cellulose composite. Macromolecules, 37(20): 7683–7687CrossRefGoogle Scholar
  35. Perlack R D, Wright L L, Turhollow A F, Graham R L, Stokes B J, Erbach D C (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion–ton annual supply. Oak Ridge National Lab TN, doi: 10.2172/885984Google Scholar
  36. Qin X, Lu A, Cai J, Zhang L (2013a). Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydrate Polymers, 92(2): 1315–1320CrossRefGoogle Scholar
  37. Qin X, Lu A, Zhang L (2013b). Gelation behavior of cellulose in NaOH/urea aqueous system via cross–linking. Cellulose (London, England), 20(4): 1669–1677Google Scholar
  38. Sarko A (1978). What is the crystalline structure of cellulose? Technical Association of the Pulp and Paper Industry, TappiGoogle Scholar
  39. Segal L, Creely J J, Martin A E Jr, Conrad C M (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X–ray diffractometer. Textile Research Journal, 29(10): 786–794Google Scholar
  40. Teng N, Ni J, Chen H Z, Ren Q H, Na H N, Liu X Q, Zhang R Y, Zhu J (2016). Initiating highly effective hydrolysis of regenerated cellulose by controlling transition of crystal form with sulfolane under microwave radiation. ACS Sustainable Chemistry & Engineering, 4 (3): 1507–1511Google Scholar
  41. Tsarevsky N V, Bernaerts K, Dufour B, Prez F D, Matyjaszewski K (2004). Well–defined (Co) polymers with 5–vinyltetrazole units via combination of atom transfer radical (Co) polymerization of acrylonitrile and “click chemistry”–type postpolymerization modification. Macromolecules, 37(25): 9308–9313CrossRefGoogle Scholar
  42. Wang J, Lin X, Luo X, Yao W (2015). Preparation and characterization of the linked lanthanum carboxymethylcellulose microsphere adsorbent for removal of fluoride from aqueous solutions. RSC Advances, 5(73): 59273–59285CrossRefGoogle Scholar
  43. Wang L H, Wang Y L, Zhao X S, Han Z (2013). Comparative study on the method of extracting straw cellulose. Zhongguo Nongxue Tongbao, 29: 130–134 (in Chinese)Google Scholar
  44. Wang T, Phyo P, Hong M (2016). Multidimensional solid–state NMR spectroscopy of plant cell walls. Solid State Nuclear Magnetic Resonance, 78: 56–63CrossRefGoogle Scholar
  45. Wang Y, Deng Y (2009). The kinetics of cellulose dissolution in sodium hydroxide solution at low temperatures. Biotechnology and Bioengineering, 102(5): 1398–1405CrossRefGoogle Scholar
  46. Yang B, Wyman C E (2008). Pretreatment: The key to unlocking lowcost cellulosic ethanol. Biofuels, Bioproducts & Biorefining, 2(1): 26–40CrossRefGoogle Scholar
  47. Yui T, Okayama N, Hayashi S (2010). Structure conversions of cellulose IIII crystal models in solution state: A molecular dynamics study. Cellulose (London, England), 17(4): 679–691Google Scholar
  48. Zhang J Q, Lin L, Sun Y, Mitchell G, Liu S J (2008). Advance of studies on structure and decrystallization of cellulose. Linchan Huaxue Yu Gongye, 28: 109–114 (in Chinese)Google Scholar

Copyright information

© Higher Education Press 2019

Authors and Affiliations

  • Qian Chen
    • 1
  • Kai Zheng
    • 1
  • Qingtao Fan
    • 2
  • Kun Wang
    • 1
    Email author
  • Haiyan Yang
    • 3
  • Jianxin Jiang
    • 1
  • Shijie Liu
    • 4
  1. 1.Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and TechnologyBeijing Forestry UniversityBeijingChina
  2. 2.Beijing Institute of Science and Technology InformationBeijingChina
  3. 3.College of Chemical EngineeringSouthwest Forestry UniversityKunmingChina
  4. 4.Department of Paper and Bioprocess EngineeringSUNY College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations