Advertisement

Acetogenins as potential checkpoint-2 kinase inhibitors: an in silico analysis

  • P. Meghana
  • Jain R. Sandeep Kumar
  • Telkar Sandeep
  • N. Prashanth
  • H. M. KumaraswamyEmail author
Short Communication
  • 4 Downloads

Abstract

Acetogenins are known anticancer agents present in the family Annonaceae. Drugs which can downregulate checkpoint kinase 2 (CHK2) in the ataxia telangiectasia mutated (ATM) signaling pathway are known to enhance chemosensitizing and radiosensitizing effects in cancer therapy. In the present study, the effect of 20 acetogenin compounds on CHK2 kinase is evaluated using Molecular docking studies. Twenty different acetogenin structures were retrieved from Pubchem. The physicochemical properties and absorption, distribution, metabolism, excretion, and toxicity (ADMET) were predicted. In silico virtual screening simulation was performed against CHK2 kinase. Among the 20 acetogenin compounds, Glabracin A showed the highest binding energy of − 14.9 kcal/mol. All the other acetogenins showed good binding energy of − 6.4 to − 7.4 kcal/mol with at least one or more hydrogen bonds. In silico analysis evidences acetogenins as good CHK2 inhibitors.

Keywords

Acetogenins CHK2 kinase Molecular docking ATM signaling pathway 

Notes

Acknowledgements

All the authors thank Department of Biotechnology, Kuvempu University for providing the facilities to carry out the research work. The first author acknowledges the Department of Science and Technology, Women Scientist Scheme-A Grant No. SR/WOS-A/LS/461/2016(G) for financial support.

References

  1. Albarakati N, Abdel-Fatah T, Doherty R, Russell R, Agarwal D, Moseley P et al (2015) Targeting BRCA1 BER deficient breast cancer by ATM or DNA PKcs blockade either alone or in combination with cisplatin for personalized therapy. Mol Oncol 9(1):204–217PubMedCrossRefPubMedCentralGoogle Scholar
  2. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11:726–734PubMedPubMedCentralCrossRefGoogle Scholar
  3. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Mol Biol 10(12):980CrossRefGoogle Scholar
  4. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem 4:217–241CrossRefGoogle Scholar
  5. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G et al (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52:3099–3105PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chih HW, Chiu HF, Tang KS, Chang FR, Wu YC (2001) Bullatacin, a potent antitumor annonaceous acetogenin, inhibits proliferation of human hepatocarcinoma cell line 2.2. 15 by apoptosis induction. Life Sci 69(11):1321–1331PubMedCrossRefPubMedCentralGoogle Scholar
  7. Coothankandaswamy V, Liu Y, Mao SC, Morgan JB, Mahdi F, Jekabsons MB et al (2010) The alternative medicine pawpaw and its acetogenin constituents suppress tumor angiogenesis via the HIF-1/VEGF pathway. J Nat Prod 73(5):956PubMedPubMedCentralCrossRefGoogle Scholar
  8. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Bio 1263:243–250CrossRefGoogle Scholar
  9. Deep G, Kumar R, Jain AK, Dhar D, Panigrahi GK, Hussain A et al (2016) Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity. Sci Rep 6:23135PubMedPubMedCentralCrossRefGoogle Scholar
  10. DeLano WL (2002) ThePyMOL molecular graphics system. DeLano Scientific, San Carlos, CA, USA. http://www.pymol.org. Accessed 10 Oct 2014
  11. Duong HQ, Hong YB, Kim JS, Lee HS, Yi YW, Kim YJ et al (2013) Inhibition of checkpoint kinase 2 (CHK2) enhances sensitivity of pancreatic adenocarcinoma cells to gemcitabine. J Cell Mol Med 17(10):1261–1270PubMedPubMedCentralCrossRefGoogle Scholar
  12. González-Coloma A, Guadano A, Inés CD, Martínez-Díaz R, Cortes D (2002) Selective action of acetogenin mitochondrial complex I inhibitors. Z Naturforsch C 57(11–12):1028–1034PubMedCrossRefPubMedCentralGoogle Scholar
  13. Hacker K, Maas R, Kornhuber J, Fromm MF, Zolk O (2015) Substrate-dependent inhibition of the human organic cation transporter OCT2: a comparison of metformin with experimental substrates. PloS One 10(9):e0136451PubMedPubMedCentralCrossRefGoogle Scholar
  14. He K, Zhao GX, Shi G, Zeng L, Chao JF, McLaughlin JL (1997) Additional bioactive annonaceous acetogenins from Asimina triloba (Annonaceae). Bioorg Med Chem 5(3):501–506PubMedCrossRefPubMedCentralGoogle Scholar
  15. Jabeen I, Pleban K, Rinner U, Chiba P, Ecker GF (2012) Structure–activity relationships, ligand efficiency, and lipophilic efficiency profiles of benzophenone-type inhibitors of the multidrug transporter P-glycoprotein. J Med Chem 55(7):3261–3273PubMedPubMedCentralCrossRefGoogle Scholar
  16. Jamkhande PG, Wattamwar AS (2015) Annona reticulata Linn (Bullock’s heart): plant profile, phytochemistry and pharmacological properties. J Tradit Complement Med 5(3):144–152PubMedPubMedCentralCrossRefGoogle Scholar
  17. Jobson AG, Cardellina JH, Scudiero D, Kondapaka S, Zhang H, Kim H et al (2007) Identification of a Bis-guanylhydrazone [4, 4′-Diacetyldiphenylurea-bis (guanylhydrazone); NSC 109555] as a novel chemotype for inhibition of Chk2 kinase. Mol Pharmacol 72(4):876–884PubMedCrossRefPubMedCentralGoogle Scholar
  18. Keserü GM, Makara GM (2009) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discovery 8(3):203PubMedCrossRefPubMedCentralGoogle Scholar
  19. Kojima N, Tanaka T (2009) Medicinal chemistry of Annonaceous acetogenins: design, synthesis, and biological evaluation of novel analogues. Molecules 14(9):3621–3661PubMedPubMedCentralCrossRefGoogle Scholar
  20. Larregieu CA, Benet LZ (2013) Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. AAPS J 15(2):483–497PubMedPubMedCentralCrossRefGoogle Scholar
  21. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778–2786PubMedCrossRefPubMedCentralGoogle Scholar
  22. Liaw CC, Chang FR, Wu MJ, Wu YC (2003) A novel constituent from Rollinia mucosa, Rollicosin, and a new approach to develop annonaceous acetogenins as potential antitumor agents. J Nat Prod 66(2):279–281PubMedCrossRefPubMedCentralGoogle Scholar
  23. Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341CrossRefGoogle Scholar
  24. Liu XX, Alali FQ, Hopp DC, Rogers LL, Pilarinou E, McLaughlin JL (1998) Glabracins A and B, two new acetogenins from Annona glabra. Bioorg Med Chem 6(7):959–965PubMedCrossRefPubMedCentralGoogle Scholar
  25. Matthews TP, Jones AM, Collins I (2013) Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anticancer therapies. Expert Opin Drug Discov 8(6):621–640PubMedPubMedCentralCrossRefGoogle Scholar
  26. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157PubMedPubMedCentralCrossRefGoogle Scholar
  27. Moghadamtousi SZ, Rouhollahi E, Karimian H, Fadaeinasab M, Firoozinia M, Abdulla MA et al (2015) The chemopotential effect of Annona muricata leaves against azoxymethane-induced colonic aberrant crypt foci in rats and the apoptotic effect of acetogenin annomuricin E in HT-29 cells: a bioassay-guided approach. PloS One 10(4):e0122288CrossRefGoogle Scholar
  28. Pettit GR, Riesen R, Leet JE, Polonsky J, Smith CR, Schmidt JM, Dufresne C, Schaufelberger D, Moretti C (1989) Isolation and structure of rolliniastatin 2: a new cell growth inhibitory acetogenin from rollznza mucosa1. Heterocycles 28(7)Google Scholar
  29. Pires IM, Ward TH, Dive C (2010) Oxaliplatin responses in colorectal cancer cells are modulated by CHK2 kinase inhibitors. Br J Pharmacol 159(6):1326–1338PubMedPubMedCentralCrossRefGoogle Scholar
  30. Pommier Y, Weinstein JN, Aladjem MI, Kohn KW (2006) Chk2 molecular interaction map and rationale for Chk2 inhibitors. Clin Cancer Res 12(9):2657–2661PubMedCrossRefPubMedCentralGoogle Scholar
  31. Qayed WS, Aboraia AS, Abdel-Rahman HM, Youssef AF (2015) Annonaceous acetogenins as a new anticancer agent. Der Pharma Chemica 7(6):24–35Google Scholar
  32. Ragasa CY, Soriano G, Torres OB, Don MJ, Shen CC (2012) Acetogenins from Annona muricata. Pharmacognosy J 4(32):32–37CrossRefGoogle Scholar
  33. Sander T, Freyss J, von Korff M, Rufener C (2015) DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55(2):460–473PubMedCrossRefPubMedCentralGoogle Scholar
  34. Schüttelkopf AW, Van Aalten DMF (2004) PRODRG—a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D60:1355–1363Google Scholar
  35. Sevrioukova IF, Poulos TL (2015) Current approaches for investigating and predicting cytochrome P450 3A4-ligand interactions. Monooxygenase, peroxidase and peroxygenase properties and mechanisms of cytochrome P450. Springer International Publishing, Cham, pp 83–105CrossRefGoogle Scholar
  36. Shepard PD, Canavier CC, Levitan ES (2007) Ether-a-go-go–related gene potassium channels: what’s all the buzz about? Schizophr Bull 33(6):1263–1269PubMedPubMedCentralCrossRefGoogle Scholar
  37. Silva-Santisteban MC, Westwood IM, Boxall K, Brown N, Peacock S, McAndrew C et al (2013) Fragment-based screening maps inhibitor interactions in the ATP-binding site of checkpoint kinase 2. PloS One 8(6):e65689PubMedPubMedCentralCrossRefGoogle Scholar
  38. Sjögren E, Helena T, Christer T (2016) In silico modeling of gastrointestinal drug absorption: predictive performance of three physiologically based absorption models. Mol Pharm 13(6):1763–1778PubMedCrossRefPubMedCentralGoogle Scholar
  39. Torres MP, Rachagani S, Purohit V, Pandey P, Joshi S, Moore ED et al (2012) Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett 323(1):29–40PubMedPubMedCentralCrossRefGoogle Scholar
  40. Trott O, Olson AJ (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentralGoogle Scholar
  41. Tsaioun K, Blaauboer BJ, Hartung T (2016) Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. ALTEX 33(4):343PubMedCrossRefPubMedCentralGoogle Scholar
  42. Veerakumar S, Amanulla SS, Ramanathan K (2016) Anti-cancer efficacy of ethanolic extracts from various parts of Annona Squamosa on MCF-7 cell line. J Pharmacogn Phytother 8(7):147–154CrossRefGoogle Scholar
  43. Velic D, Couturier AM, Ferreira MT, Rodrigue A, Poirier GG, Fleury F, Masson JY (2015) DNA damage signalling and repair inhibitors: the long-sought-after Achilles’ heel of cancer. Biomolecules 5(4):3204–3259PubMedPubMedCentralCrossRefGoogle Scholar
  44. Vijesh AM, Isloor AM, Telkar S, Arulmoli T, Fun HK (2013) Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arab J Chem 6(2):197–204CrossRefGoogle Scholar
  45. Wessler JD et al (2013) The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol 61(25):2495–2502PubMedCrossRefPubMedCentralGoogle Scholar
  46. Wu FE, Zhao GX, Zeng L, Zhang Y, Schwedler JT, McLaughlin JL, Sastrodihardjo S (1995) Additional bioactive acetogenins, annomutacin and (2, 4-trans and cis)-10R-annonacin-A-ones, from the leaves of Annona muricata. J Nat Prod 58(9):1430–1437PubMedCrossRefPubMedCentralGoogle Scholar
  47. Xu L, Chang CJ, Yu JG, Cassady JM (1989) Chemistry and selective cytotoxicity of annonacin-10-one, isoannonacin, and isoannonacin-10-one. Novel polyketides from Annona densicoma (Annonaceae). J Org Chem 54(23):5418–5421CrossRefGoogle Scholar
  48. Yang H, Zhang N, Li X, Chen J, Cai B (2009) Structure–activity relationships of diverse annonaceous acetogenins against human tumor cells. Bioorg Med Chem Lett 19(8):2199–2202PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ye Q, He K, Oberlies NH, Zeng L, Shi G, Evert D, McLaughlin JL (1996) Longimicins A−D: Novel bioactive acetogenins from Asimina longifolia (Annonaceae) and structure−activity relationships of asimicin type of Annonaceous acetogenins. J Med Chem 39(9):1790–1796PubMedCrossRefPubMedCentralGoogle Scholar
  50. Yuan SS, Chang HL, Chen HW, Yeh YT, Kao YH, Lin KH, Wu YC, Su JH (2003) Annonacin, a mono-tetrahydrofuran acetogenin, arrests cancer cells at the G1 phase and causes cytotoxicity in a Bax-and caspase-3-related pathway. Life Sci 72(25):2853–2861PubMedCrossRefPubMedCentralGoogle Scholar
  51. Zhou J, Xie G, Yan X (2011) Encyclopedia of traditional Chinese medicines. Isolat Compound AB 1:455Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • P. Meghana
    • 1
  • Jain R. Sandeep Kumar
    • 1
  • Telkar Sandeep
    • 1
  • N. Prashanth
    • 1
  • H. M. Kumaraswamy
    • 1
    Email author
  1. 1.Department of BiotechnologyKuvempu UniversityShankarghattaIndia

Personalised recommendations