Proteomic study of endothelial dysfunction in response to homocysteinylated albumin

  • Reema Banarjee
  • Akshay Sharma
  • Shakuntala Bai
  • Arati Deshmukh
  • Mahesh KulkarniEmail author
Original Article


Hyperhomocysteinemia is reported to be involved in the progression of cardiovascular and neurological diseases. The levels of homocysteine in blood can increase due to deficiency of folic acid, vitamin B12, or B6. Homocyteine gets converted to its cyclic analog, homocysteine thiolactone, by methionyl-tRNA synthetase during the process of translation, which can further react with the free amino groups of proteins forming an N-homocysteinylated product. The homocysteine-modified proteins have altered structure and function and can be deleterious to cells. Accumulation of such modified proteins in plasma could be one of the possible mechanisms for the development of cardiovascular complications in patients with hyperhomocysteinemia. To investigate this, albumin was modified with homocysteine thiolactone, and its effect on endothelial function was studied in Human Umbilical Vein Endothelial Cells (HUVECs) by SWATH MS-based proteomics approach. Treatment of HUVECs with homocysteinylated albumin for 24 h negatively affected cell viability, and led to altered abundance of about 53 proteins, out of the total 1410 identified in proteomic analysis. Thus, homocysteinylated proteins can lead to dysfunction in vascular endothelial cells and predispose to cardiovascular diseases.

Graphic abstract


Endothelial dysfunction Homocysteine Proteomics SWATH Chemical modification 



Bovine serum albumin


Endothelial dysfunction


Human umbilical vein endothelial cells




Homocysteine thiolactone




Senescence-associated secretory proteins


Sequential window acquisition of theoretical masses



This work was carried out under the project BSC0124. The authors acknowledge University Grants Commission for research fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

42485_2019_15_MOESM1_ESM.pdf (120 kb)
Supplementary material 1 (PDF 119 kb)
42485_2019_15_MOESM2_ESM.xlsx (17.2 mb)
Supplementary material 2 (XLSX 17584 kb)
42485_2019_15_MOESM3_ESM.xlsx (14 kb)
Supplementary material 3 (XLSX 13 kb)
42485_2019_15_MOESM4_ESM.xlsx (276 kb)
Supplementary material 4 (XLSX 275 kb)


  1. Alpi AF, Chaugule V, Walden H (2016) Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochem J 473:3401–3419CrossRefGoogle Scholar
  2. Anderson JL, Muhlestein JB, Horne BD, Carlquist JF, Bair TL, Madsen TE, Pearson RR (2000) Plasma homocysteine predicts mortality independently of traditional risk factors and C-reactive protein in patients with angiographically defined coronary artery disease. Circulation 102:1227–1232CrossRefGoogle Scholar
  3. Astrof S, Hynes RO (2009) Fibronectins in vascular morphogenesis. Angiogenesis 12:165–175CrossRefGoogle Scholar
  4. Banarjee R, Sharma A, Bai S, Deshmukh A, Kulkarni M (2018) Proteomic study of endothelial dysfunction induced by AGEs and its possible role in diabetic cardiovascular complications. J Proteom 187:69–79CrossRefGoogle Scholar
  5. Bełtowski J (2005) Protein homocysteinylation: a new mechanism of atherogenesis. Postepy Hig Med Dosw 59:392–404Google Scholar
  6. Boers GHJ, Smals AGH, Trijbels FJM, Fowler B, Bakkeren JAJM, Schoonderwaldt HC, Kleijer WJ, Kloppenborg PWC (1985) Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 313:709–715CrossRefGoogle Scholar
  7. Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, Wang H, Nordrehaug JE, Arnesen E, Rasmussen K (2006) Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 354:1578–1588CrossRefGoogle Scholar
  8. Capasso R, Sambri I, Cimmino A, Salemme S, Lombardi C, Acanfora F, Satta E, Puppione DL, Perna AF, Ingrosso D (2012) Homocysteinylated albumin promotes increased monocyte-endothelial cell adhesion and up-regulation of MCP1, Hsp60 and ADAM17. PLoS ONE 7:e31388CrossRefGoogle Scholar
  9. Chen J-M, Fortunato M, Stevens RAE, Barrett AJ (2001) Activation of progelatinase A by mammalian legumain, a recently discovered cysteine proteinase. Biol Chem 382:777–784CrossRefGoogle Scholar
  10. Cho J, Mosher DF (2006) Role of fibronectin assembly in platelet thrombus formation. J Thromb Haemost 4:1461–1469CrossRefGoogle Scholar
  11. Chwatko G, Boers GH, Strauss KA, Shih DM, Jakubowski H (2007) Mutations in methylenetetrahydrofolate reductase or cystathionine beta-synthase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. FASEB J 8:1707–1713CrossRefGoogle Scholar
  12. Cotter AM, Molloy AM, Scott JM, Daly SF (2001) Elevated plasma homocysteine in early pregnancy: a risk factor for the development of severe preeclampsia. Am J Obstet Gynecol 185:781–785CrossRefGoogle Scholar
  13. Finkelstein JD, Martin JJ (1984) Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J Biol Chem 259:9508–9513Google Scholar
  14. Fu B, Li S, Wang L, Berman MA, Dorf ME (2014) The ubiquitin conjugating enzyme UBE2L3 regulates TNF alpha-induced linear ubiquitination. Cell Res 24:376–379CrossRefGoogle Scholar
  15. Fu Y, Wang X, Kong W (2018) Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets. Br J Pharmacol 175:1173–1189CrossRefGoogle Scholar
  16. Gharaibeh MY, Gahtan RA, Khabour OF, Alomari MA (2010) Hyperhomocysteinemia, low folate, and vitamin B12 deficiency in elderly living at home and care residences: a comparative study. Lab Med 41:410–414CrossRefGoogle Scholar
  17. Glowacki R, Jakubowski H (2004) Cross-talk between Cys34 and lysine residues in human serum albumin revealed by N-Homocysteinylation. J Biol Chem 279:10864–10871CrossRefGoogle Scholar
  18. Graham IM, Daly LE, Refsum HM et al (1997) Plasma homocysteine as a risk factor for vascular disease: the European concerted action project. JAMA 277:1775–1781CrossRefGoogle Scholar
  19. Gurda D, Handschuh L, Kotkowiak W, Jakubowski H (2015) Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells. Amino Acids 47:1319–1339CrossRefGoogle Scholar
  20. Jakubowski H (1999) Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J 13:2277–2283CrossRefGoogle Scholar
  21. Jakubowski H (2011) Quality control in tRNA charging—editing of homocysteine. Acta Biochim Polonica 58:149–163Google Scholar
  22. Jakubowski H, Perla-Kajan J, Finnell RH, Cabrera RM, Wang H, Gupta S, Kruger WD, Kraus JP, Shih DM (2009) Genetic or nutritional disorders in homocysteine or folate metabolism increase protein N-homocysteinylation in mice. FASEB J 23:1721–1727CrossRefGoogle Scholar
  23. Kanani PM, Sinkey CA, Browning RL, Allaman M, Knapp HR, Haynes WG (1999) Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation 100:1161–1168CrossRefGoogle Scholar
  24. Kumar T, Sharma GS, Singh LR (2014) Existence of molten globule state in homocysteine-induced protein covalent modifications. PLoS ONE 9:e113566CrossRefGoogle Scholar
  25. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, McQueen MJ, Probstfield J, Fodor G, Held C, Genest J Jr (2006) Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 354:1567–1577CrossRefGoogle Scholar
  26. Loscalzo J (1996) The oxidant stress of hyperhomocysteinemia. J Clin Invest 98:5–7CrossRefGoogle Scholar
  27. Lunde NN, Holm S, Dahl TB, Elyouncha I, Sporsheim B, Gregersen I, Abbas A, Skjelland M, Espevik T, Solberg R, Johansen HT, Halvorsen B (2017) Increased levels of legumain in plasma and plaques from patients with carotid atherosclerosis. Atherosclerosis 257:216–223CrossRefGoogle Scholar
  28. Ma Y, Peng D, Liu C, Huang C, Luo J (2017) Serum high concentrations of homocysteine and low levels of folic acid and vitamin B12 are significantly correlated with the categories of coronary artery diseases. BMC Cardiovasc Disord 17:37CrossRefGoogle Scholar
  29. Mattock KL, Gough PJ, Humphries J, Burnand K, Patel L, Suckling KE, Cuello F, Watts C, Gautel M, Avkiran M, Smith A (2010) Legumain and cathepsin-l expression in human unstable carotid plaque. Atherosclerosis 208:83–89CrossRefGoogle Scholar
  30. McCully KS (1996) Homocysteine and vascular disease. Nat Med 2:386–389CrossRefGoogle Scholar
  31. Morgan MJ, Liu Z-g (2011) Crosstalk of reactive oxygen species and NF-kB signaling. Cell Res 21:103–115CrossRefGoogle Scholar
  32. Pankov R, Cukierman E, Katz B-Z, Matsumoto K, Lin DC, Lin S, Hahn C, Yamada KM (2000) Integrin dynamics and matrix assembly: tensin-dependent translocation of alpha5 beta1 integrins promotes early fibronectin fibrillogenesis. J Cell Biol 148:1075–1090CrossRefGoogle Scholar
  33. Paoli P, Sbrana F, Tiribilli B, Caselli A, Pantera B, Cirri P, De Donatis A, Formigli L, Nosi D, Manao G, Camici G, Ramponi G (2012) Protein N-homocysteinylation induces the formation of toxic amyloid-like protofibrils. J Mol Biol 400:889–907CrossRefGoogle Scholar
  34. Perla-Kajan J, Stanger O, Luczak M, Ziolkowska A, Malendowicz LK, Twardowski T, Lhotak S, Austin RC, Jakubowski H (2008) Immunohistochemical detection of N-homocysteinylated proteins in humans and mice. Biomed Pharmacother 62:473–479CrossRefGoogle Scholar
  35. Prattichizzo F, De Nigris V, Mancuso E, Spiga R, Giuliani A, Matacchione G, Lazzarini R, Marcheselli F, Recchioni R, Testa R, La Sala L, Rippo MR, Procopio AD, Olivieri F, Ceriello A (2018) Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol 15:170–181CrossRefGoogle Scholar
  36. Refsum H, Ueland PM, Nygard O, Vollset SE (1998) Homocysteine and cardiovascular disease. Ann Rev Med 49:31–62CrossRefGoogle Scholar
  37. Sadeghian S, Fallahi F, Salarifar M, Davoodi G, Mahmoodian M, Fallah N, Darvish S, Karimi A, Tehran Heart C (2006) Homocysteine, vitamin B12 and folate levels in premature coronary artery disease. BMC Cardiovasc Disord 6:38–38CrossRefGoogle Scholar
  38. Salminen A, Kauppinen A, Kaarniranta K (2012) Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 24:835–845CrossRefGoogle Scholar
  39. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PWF, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483CrossRefGoogle Scholar
  40. Sikora M, Marczak Åu, Twardowski T, Stobiecki M, Jakubowski H (2010) Direct monitoring of albumin lysine-525 N-homocysteinylation in human serum by liquid chromatography/mass spectrometry. Anal Biochem 405:132–134CrossRefGoogle Scholar
  41. Storer CL, Dickey CA, Galigniana MD, Rein T, Cox MB (2011) FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab 22:481–490CrossRefGoogle Scholar
  42. Sydow K, Schwedhelm E, Arakawa N, Bode-Boger SM, Tsikas D, Hornig B, JrC Frolich, Boger RH (2003) ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of l-arginine and B vitamins. Cardiovasc Res 57:244–252CrossRefGoogle Scholar
  43. Ubbink JB, van der Merwe A, Delport R, Allen RH, Stabler SP, Riezler R, Vermaak WJ (1996) The effect of a subnormal vitamin B-6 status on homocysteine metabolism. J Clin Invest 98:177–184CrossRefGoogle Scholar
  44. Verhaar MC, Stroes E, Rabelink TJ (2002) Folates and cardiovascular disease. Arterioscler Thromb Vasc Biol 22:6–13CrossRefGoogle Scholar
  45. Woo KS, Chook P, Chan LL, Cheung AS, Fung WH, Qiao M, Lolin YI, Thomas GN, Sanderson JE, Metreweli C, Celermajer DS (2002) Long-term improvement in homocysteine levels and arterial endothelial function after 1-year folic acid supplementation. Am J Med 112:535–539CrossRefGoogle Scholar
  46. Wu LL, Wu JT (2002) Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta 322:21–28CrossRefGoogle Scholar
  47. Wustmann K, Klaey M, Burow A, Shaw SG, Hess OM, Allemann Y (2012) Additive effect of homocysteine- and cholesterol-lowering therapy on endothelium-dependent vasodilation in patients with cardiovascular disease. Cardiovasc Ther 30:277–286CrossRefGoogle Scholar
  48. Yang X, Gao Y, Zhou J, Zhen Y, Yang Y, Wang J, Song L, Liu Y, Xu H, Chen Z, Hui R (2006) Plasma homocysteine thiolactone adducts associated with risk of coronary heart disease. Clin Chim Acta 364:230–234CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Reema Banarjee
    • 1
    • 2
  • Akshay Sharma
    • 1
  • Shakuntala Bai
    • 1
    • 2
  • Arati Deshmukh
    • 1
    • 2
  • Mahesh Kulkarni
    • 1
    • 2
    Email author
  1. 1.Proteomics Facility, Biochemical Sciences DivisionCSIR-National Chemical LaboratoryPuneIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia

Personalised recommendations