Advertisement

Thermal and crystallization behaviour of epoxidized high cis-polybutadiene rubber

  • Marcos L. DiasEmail author
  • Frederico A. P. Schoene
  • Camila Ramirez
  • Isabela A. Graciano
  • Lys Sirelli
  • Raquel P. Gonçalves
Original Paper

Abstract

High cis-polybutadiene (HCBR) was epoxidized by using in situ formed formic acid and hydrogen peroxide in the absence and presence of Tween 20 at 50 °C at different reaction times. Epoxidized HCBR (EHCBR) with degree of epoxidation from 3.7 to 38.8% was obtained. Low degree epoxidation EHCBR are semi-crystalline rubbers presenting lower crystallization temperatures than the non-epoxidized rubber on cooling and a cold crystallization and melting temperature on heating, differently from high epoxidation content rubbers (over 10%) which are amorphous materials. Epoxidation increases the glass transition temperature and decreases the melting temperature and the degree of crystallinity of the polybutadiene. The increase of epoxidation also decreases its thermal stability, which drops about 28 °C when the content of epoxidation is increased about 30%. Non-isothermal crystallization experiments of HCBR and EHCBR were systematically carried out at cooling rates of 5, 10, 20, and 30 °C/min to evaluate the crystallinity developed upon cooling. By increasing the cooling rate, the crystallization enthalpy increases for HCBR while it decreases for EHCBR.

Keywords

Epoxidized rubber Polybutadiene High cis Epoxidation Crystallization 

Notes

Acknowledgements

The authors are grateful to CNPq (310917/2014-0), CNPq-PIBIC, CAPES, and FAPERJ (E-26/201.304/2014) for the financial support.

Compliance with ethical standards

Conflict of interest

All the authors have read and approved the content of the manuscript and are aware of the submission, agreeing to its publication. The authors state having no conflict of interest.

References

  1. 1.
    Saijo K, Zhu YP, Hashimoto T, Wasiak A, Brzostowski N (2007) Oriented crystallization of crosslinked cis-1,4-polybutadiene rubber. Appl Polym Sci 105:137–157.  https://doi.org/10.1002/app.26019 CrossRefGoogle Scholar
  2. 2.
    Chiu HT, Li WC, Tsai PA (2006) A Study of rheological behavior and compatibility of NR/BR blends. Polym Plast Technol Eng 45:845–855.  https://doi.org/10.1080/03602550600614069 CrossRefGoogle Scholar
  3. 3.
    Bucknall CB (1977) Toughened plastics. Applied Science Publishers, LondonCrossRefGoogle Scholar
  4. 4.
    Candia FD, Romano G, Russo R (1987) Stress and thermally induced crystallization in crosslinked cis-polybutadiene. Appl Polym Sci. 34:211–221.  https://doi.org/10.1002/app.1987.070340118 CrossRefGoogle Scholar
  5. 5.
    Cheng TL, Su AC (1993) Spherulites of long-chain branched cis-1,4-polybutadiene. Macromolecules 26:7161–7166.  https://doi.org/10.1021/ma00078a008 CrossRefGoogle Scholar
  6. 6.
    Cheng TL, Su AC (1995) Spherulites of cis-1,4-polybutadiene: molecular weight effects. Polymer 36:73–80.  https://doi.org/10.1016/0032-3861(95)90677-T CrossRefGoogle Scholar
  7. 7.
    Di Lorenzo ML (2010) Crystallization kinetics of cis-1,4-polybutadiene. J Appl Polym Sci 116:1408–1413.  https://doi.org/10.1002/app.30681 CrossRefGoogle Scholar
  8. 8.
    Di Lorenzo ML (2010) Thermal properties and three-phase structure of cis-1,4-polybutadiene. Open Macromol J 4:15–21CrossRefGoogle Scholar
  9. 9.
    Rajabi FHP, Nikje MMA, Farahani BV, Sabouri N (2011) Kinetic study of cis-polybutadiene epoxidation by using 1HNMR spectroscopy in buffered Oxone® solution with tetra-n-butyl ammonium bromide as phase transfer catalyst (PTC). J Iran Chem Res 4:1–8Google Scholar
  10. 10.
    Jacobi MM, Santin CK, Vigânico ME (2004) Study of the epoxidation of polydiene rubbers II. Influence of the microstructure on the epoxidation of BR with performic acid. Kautsch Gummi Kunstst 57:82–89Google Scholar
  11. 11.
    Zuchowska D (1980) Polybutadiene modified by epoxidation. I. Effect of polybutadiene microstructure on the reactivity of double bonds. Polymer 21:514–520.  https://doi.org/10.1016/0032-3861(80)90217-7 CrossRefGoogle Scholar
  12. 12.
    Baker CSL, Gelling IR, Newell R (1985) Epoxidized natural rubber. Rubber Chem Techn 58:67–85.  https://doi.org/10.5254/1.3536059 CrossRefGoogle Scholar
  13. 13.
    Margaritis G, Kalfoglou NK (1988) Compatibility of poly(vinyl chloride) with epoxidized polybutadiene. Eur Polym. J 24:1043–1047CrossRefGoogle Scholar
  14. 14.
    Roy S, Gupta BR, De SK (1993) Elastomer technology handbook. CRC Press, Boca RatonGoogle Scholar
  15. 15.
    Wang SM, Tsiang RCC (1996) Epoxidation of partially hydrogenated styrene-butadiene block-copolymers using peracetic-acid in a cyclohexane water heterogeneous system. J Polym Sci 34:1483–1491.  https://doi.org/10.1002/(SICI)1099-0518(199606)34:8%3c1483:AID-POLA12%3e3.0.CO;2-4 CrossRefGoogle Scholar
  16. 16.
    Gemmer RV, Golub MA (1978) 13C NMR spectroscopic study of epoxidized 1,4-polyisoprene and 1,4-polybutadiene. J Polym Sci Polym Chem 16:2985–2990.  https://doi.org/10.1002/pol.1978.170161123 CrossRefGoogle Scholar
  17. 17.
    Perera MCS, Elix JA, Bradbury JH (1988) Furanized rubber studied by NMR spectroscopy. J Polym Sci Polym Chem 26:637–651.  https://doi.org/10.1002/pola.1988.080260227 CrossRefGoogle Scholar
  18. 18.
    Lin JP, Chang CY, Wu CH, Shih SM (1996) Thermal degradation kinetics of polybutadiene rubber. Polym Degrad Stab 53:295–300.  https://doi.org/10.1016/0141-3910(96)00098-5 CrossRefGoogle Scholar
  19. 19.
    Silva GM, Ferreira ILM, Costa MPM, Pires NMT, Costa MAS (2014) Copolymerization of 1-hexene and 1-dodecene with 1,3-butadiene by a versatate/diisobutylaluminum hydride/t-butyl chloride catalyst system. Polímeros 24:153–161.  https://doi.org/10.4322/polimeros.2014.040 CrossRefGoogle Scholar
  20. 20.
    Di Lorenzo ML, Silvestre C (1999) Non-isothermal crystallization of polymers. Prog Polym Sci 24:917–950.  https://doi.org/10.1016/S0079-6700(99)00019-2 CrossRefGoogle Scholar
  21. 21.
    Bianchi O, Martins JN, Luvison C, Echeverrigaray SG (2014) Melt crystallization kinetics of polyhedral oligomeric silsesquioxane under non-isothermal conditions. J Non-Cryst Solids 394–395:29–35.  https://doi.org/10.1016/j.jnoncrysol.2014.04.008 CrossRefGoogle Scholar
  22. 22.
    Mashak A, Ghaee A, Ravari F (2016) Effect of poly (n- vinypyrrolidone) on the non-isothermal crystallization kinetics and viscoelastic properties of PVDF films. Braz J Chem Eng 33(4):945–956.  https://doi.org/10.1590/0104-6632.20160334s20150172 CrossRefGoogle Scholar
  23. 23.
    Piccarolo S, Brucato V, Kiflie Z (2000) Non-Isothermal crystallization kinetics of PET. Polym Eng Sci 40:1263–1272.  https://doi.org/10.1002/pen.11254 CrossRefGoogle Scholar
  24. 24.
    Seo Y (2000) Non-isothermal crystallization kinetics of polytetrafiuoroethylene. Polym Eng Sci 40(6):1293–1297.  https://doi.org/10.1002/pen.11257 CrossRefGoogle Scholar

Copyright information

© The Malaysian Rubber Board 2019

Authors and Affiliations

  1. 1.Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Macromoléculas Professora Eloisa Mano (IMA)Rio de JaneiroBrazil

Personalised recommendations