Mining, Metallurgy & Exploration

, Volume 36, Issue 2, pp 343–352 | Cite as

A Sulfur K-Edge XANES and Raman Study on the Effect of Chloride Ion on Bacterial and Chemical Leaching of Chalcopyrite at 25 °C

  • Xiyu Gao
  • Yi Yang
  • Mark I. Pownceby
  • Shuiping Zhong
  • Miao ChenEmail author


In the present study, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray absorption near edge structure (XANES) spectroscopy, and Raman spectroscopy were used to investigate the effect of chloride ions on chalcopyrite bioleaching and chemical leaching at 25 °C. The leaching results show that the addition of chloride ions suppressed the dissolution of chalcopyrite in both chemical and bacterial leaching. In chemical leaching, the solution redox potential in the experiment without Cl stayed in a range more suitable for chalcopyrite dissolution compared with experiments with Cl. In bioleaching, the bacteria activity was suppressed by Cl leading to low dissolution rates of Cu. Surface morphology and chemical speciation studies confirmed the formation of potassium jarosite on the surface of the chalcopyrite leach residues. In addition, S K-edge XANES indicated the formation of trace amount of elemental sulfur and covellite on the mineral surfaces.


Chloride ion Chalcopyrite XANES Surface species 



The authors appreciate the help of Dr. Matthew Glenn on scientific and technical assistance during SEM measurements. The authors appreciate the help from the RMIT Separation Science and Mass Spectrometry Facility. XANES measurements were undertaken at the Beijing Synchrotron Radiation Facility (BSRF).

Funding Information

The authors appreciate funding from the Australian Research Council grant (ARC LP160101760). And we appreciate the support provided by the beamline scientists and staff of the BSRF. We acknowledge travel funding provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron, part of ANSTO, and funded by the Australian Government.


  1. 1.
    Brierley CL (2010) Biohydrometallurgical prospects. Hydrometallurgy 104(3–4):324–328CrossRefGoogle Scholar
  2. 2.
    Carneiro MFC, Leão VA (2007) The role of sodium chloride on surface properties of chalcopyrite leached with ferric sulfate. Hydrometallurgy 87(3–4):73–82CrossRefGoogle Scholar
  3. 3.
    Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008a) Leaching of chalcopyrite with ferric ion. Part II: effect of redox potential. Hydrometallurgy 93(3–4):88–96CrossRefGoogle Scholar
  4. 4.
    Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008b) Leaching of chalcopyrite with ferric ion. Part IV: the role of redox potential in the presence of mesophilic and thermophilic bacteria. Hydrometallurgy 93(3–4):106–115CrossRefGoogle Scholar
  5. 5.
    Degen T, Sadki M, Bron E, König U, Nénert G (2014) The HighScore suite. Powder Diffract 29:S13–S18CrossRefGoogle Scholar
  6. 6.
    Dutrizac JE (1981) The dissolution of chalcopyrite in ferric sulfate and ferric-chloride media. Metallurgical Transactions B-Process Metallurgy 12(2):371–378CrossRefGoogle Scholar
  7. 7.
    Dutrizac JE, MacDonald RJC (1971) Effect of sodium chloride on dissolution of chalcopyrite under simulated dump leaching conditions. Metall Trans A 2(8):2310–2312CrossRefGoogle Scholar
  8. 8.
    Eckert B, and Steudel R, 2003, “Molecular spectra of sulfur molecules and solid sulfur allotropes,” Elemental Sulfur and Sulfur-Rich Compounds II, R. Steudel, ed., 2003, Springer, BerlinGoogle Scholar
  9. 9.
    Gahan CS, Sundkvist JE, Sandström A (2009) A study on the toxic effects of chloride on the biooxidation efficiency of pyrite. J Hazard Mater 172(2–3):1273–1281CrossRefGoogle Scholar
  10. 10.
    Hansford GS, Vargas T (2001) Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy 59(2–3):135–145CrossRefGoogle Scholar
  11. 11.
    Kametani H, Aoki A (1985) Effect of suspension potential on the oxidation rate of copper concentrate in a sulfuric-acid solution. Metallurgical Transactions B-Process Metallurgy 16(4):695–705CrossRefGoogle Scholar
  12. 12.
    Kinnunen PHM, Puhakka JA (2004) Chloride-promoted leaching of chalcopyrite concentrate by biologically-produced ferric sulfate. J Chem Technol Biotechnol 79(8):830–834CrossRefGoogle Scholar
  13. 13.
    Lehmann MN, Stichnoth M, Walton D, Bailey SI (2000) The effect of chloride ions on the ambient electrochemistry of pyrite oxidation in acid media. J Electrochem Soc 147(9):3263–3271CrossRefGoogle Scholar
  14. 14.
    Liang CL, Xia JL, Nie ZY, Yang Y, Ma CY (2012) Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis. Bioresour Technol 110:462–467CrossRefGoogle Scholar
  15. 15.
    Liu HC, Xia JL, Nie ZY, Liu LZ, Wang L, Ma CY, Zheng L, Zhao YD, Wen W (2017) Comparative study of S, Fe and Cu speciation transformation during chalcopyrite bioleaching by mixed mesophiles and mixed thermophiles. Miner Eng 106:22–32CrossRefGoogle Scholar
  16. 16.
    Lu ZY, Jeffrey MI, Lawson F (2000) The effect of chloride ions on the dissolution of chalcopyrite in acidic solutions. Hydrometallurgy 56(2):189–202CrossRefGoogle Scholar
  17. 17.
    Mernagh TP, Trudu AG (1993) A laser Raman microprobe study of some geologically important sulfide minerals. Chem Geol 103(1–4):113–127CrossRefGoogle Scholar
  18. 18.
    Mikhlin YL, Tomashevich YV, Asanov IP, Okotrub AV, Varnek VA, Vyalikh DV (2004) Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions. Appl Surf Sci 225(1–4):395–409CrossRefGoogle Scholar
  19. 19.
    Muñoz-Ribadeneira FJ, Gomberg HJ (1971) Leaching of chalcopyrite (CuFeS2) with sodium chloride sulfuric acid solutions. Nucl Technol 11(3):367–371CrossRefGoogle Scholar
  20. 20.
    Pradhan N, Nathsarma KC, Rao KS, Sukla LB, Mishra BK (2008) Heap bioleaching of chalcopyrite: a review. Miner Eng 21(5):355–365CrossRefGoogle Scholar
  21. 21.
    Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  22. 22.
    Ruiz MC, Montes KS, Padilla R (2011) Chalcopyrite leaching in sulfate-chloride media at ambient pressure. Hydrometallurgy 109(1–2):37–42CrossRefGoogle Scholar
  23. 23.
    Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (Bio) chemistry of bacterial leaching - direct vs. indirect bioleaching. Hydrometallurgy 59(2–3):159–175CrossRefGoogle Scholar
  24. 24.
    Sasaki K, Tsunekawa M, Hasebe K, Konno H (1995) Effect of anionic ligands on the reactivity of pyrite with Fe(III) ions in acid-solutions. Colloids Surf a-Physicochem Eng Asp 101(1):39–49CrossRefGoogle Scholar
  25. 25.
    Sasaki K, Nakamuta Y, Hirajima T, Tuovinen OH (2009) Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometallurgy 95(1–2):153–158CrossRefGoogle Scholar
  26. 26.
    Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65(1):319–321Google Scholar
  27. 27.
    Shiers DW, Blight KR, Ralph DE (2005) Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria. Hydrometallurgy 80(1–2):75–82CrossRefGoogle Scholar
  28. 28.
    Velásquez-Yévenes L, Nicol M, Miki H (2010) The dissolution of chalcopyrite in chloride solutions Part 1. The effect of solution potential. Hydrometallurgy 103(1–4):108–113CrossRefGoogle Scholar
  29. 29.
    Watling HR (2014) Chalcopyrite hydrometallurgy at atmospheric pressure: 2. Review of acidic chloride process options. Hydrometallurgy 146:96–110CrossRefGoogle Scholar
  30. 30.
    Xia JL, Yang Y, He H, Liang CL, Zhao XJ, Zheng L, Ma CY, Zhao YD, Nie ZY, Qiu GZ (2010) Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans. Int J Miner Process 94(1–2):52–57CrossRefGoogle Scholar
  31. 31.
    Yang Y, Liu WH, Chen M (2015) XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30 degrees C and 48 degrees C. Miner Eng 70:99–108CrossRefGoogle Scholar
  32. 32.
    Yang Y, Liu WH, Bhargava SK, Zeng WM, Chen M (2016) A XANES and XRD study of chalcopyrite bioleaching with pyrite. Miner Eng 89:157–162CrossRefGoogle Scholar
  33. 33.
    Zammit CM, Mangold S, Jonna VR, Mutch LA, Watling HR, Dopson M, Watkin ELJ (2012) Bioleaching in brackish waters-effect of chloride ions on the acidophile population and proteomes of model species. Appl Microbiol Biotechnol 93(1):319–329CrossRefGoogle Scholar

Copyright information

© The Society for Mining, Metallurgy & Exploration 2018

Authors and Affiliations

  • Xiyu Gao
    • 1
    • 2
  • Yi Yang
    • 2
  • Mark I. Pownceby
    • 2
  • Shuiping Zhong
    • 3
  • Miao Chen
    • 1
    • 2
    Email author
  1. 1.Centre for Advanced Materials and Industrial Chemistry, School of ScienceRMIT UniversityMelbourneAustralia
  2. 2.CSIRO Mineral ResourcesClayton SouthAustralia
  3. 3.State Key Laboratory of Comprehensive Utilization of Low Grade Refractory Gold OresZijin Mining GroupLongyanChina

Personalised recommendations