An Improved Method for Parametric Model Order Reduction by Matrix Interpolation

  • Ying Liu
  • Huanyu Du
  • Hongguang LiEmail author
  • Fucai Li
  • Wei Sun
Original Paper



Parametric model order reduction (PMOR) can effectively reduce analysis time and memory cost for finite element models. However, the calculation precision of the previous methods is not usually high enough.


In this paper, an improved method is presented to approximate parametric models with higher accuracy.


First of all, Krylov subspace projection-based method generally adopted in model order reduction (MOR) is introduced. Based on that, the method to adjust the local reduced-order models (ROMs) is described briefly. Then an approach to interpolate the compatible ROMs on the tangent space is presented in detail and the calculation flow chart for parametric model order reduction (PMOR) of finite element models is provided.

Results and Conclusion

In the end, the analysis results for the moving coil of electrical-dynamic shaker demonstrate that the generated parameterized ROM can approximate the direct ROM with higher fidelity than the original method.


Parametric model order reduction Interpolation Matrix manifolds Complex model Electrical-dynamic shaker 



This project is supported by National Natural Science Foundation of China (Grant no. 11427801).


  1. 1.
    Baur U, Benner P (2009) Model reduction for parametric systems using balanced truncation and interpolation. at-Automatisierungstechnik 57(8):411–419CrossRefGoogle Scholar
  2. 2.
    Baur U, Benner P, Greiner A et al (2011) Parameter preserving model order reduction for MEMS applications. Math Comput Model Dyn Syst 17(4):297–317MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Park K (2008) Component-based vibration modeling methods for fast reanalysis and design of complex structures. ProQuest, Ann ArborGoogle Scholar
  4. 4.
    Amsallem D, Farhat C (2008) Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46(7):1803–1813CrossRefGoogle Scholar
  5. 5.
    Amsallem D, Farhat C (2011) An online method for interpolating linear parametric reduced-order models. SIAM J Sci Comput 33(5):2169–2198MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Panzer H, Mohring J, Eid R et al (2010) Parametric model order reduction by matrix interpolation. at-Automatisierungstechnik Methoden und Anwendungen der Steuerungs-, Regelungs-und Informationstechnik 58(8):475–484Google Scholar
  7. 7.
    Feng L (2005) Parameter independent model order reduction. Math Comput Simul 68(3):221–234MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Klis D, Burgard S, Farle O et al (2015) Fast simulation of wireless power transfer systems with varying coil alignment. IFAC PapersOnLine 48(1):248–253CrossRefGoogle Scholar
  9. 9.
    Burgard S, Sommer A, Farle O et al (2014) Reduced-order models of finite-element systems featuring shape and material parameters. Electromagnetics 34(3–4):143–160CrossRefGoogle Scholar
  10. 10.
    Schilders WHA, Van der Vorst HA, Rommes J (2008) Model order reduction: theory, research aspects and applications. Springer, BerlinCrossRefzbMATHGoogle Scholar
  11. 11.
    Han JS, Rudnyi EB, Korvink JG (2005) Efficient optimization of transient dynamic problems in MEMS devices using model order reduction. J Micromech Microeng 15(4):822CrossRefGoogle Scholar
  12. 12.
    Binion D, Chen X (2010) Coupled electrothermal–mechanical analysis for MEMS via model order reduction. Finite Elem Anal Des 46(12):1068–1076CrossRefGoogle Scholar

Copyright information

© Krishtel eMaging Solutions Private Limited 2019

Authors and Affiliations

  • Ying Liu
    • 1
  • Huanyu Du
    • 1
  • Hongguang Li
    • 1
    Email author
  • Fucai Li
    • 1
  • Wei Sun
    • 2
  1. 1.Institute of Vibration, Shock and Noise, State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Mechanical Engineering and AutomationNortheastern UniversityShenyangChina

Personalised recommendations