Advertisement

Journal of Vibration Engineering & Technologies

, Volume 7, Issue 6, pp 565–577 | Cite as

Influence of Backlash on Load Sharing and Dynamic Load Characteristics of Twice Split Torque Transmission System

  • Guanghu JinEmail author
  • Wei Ren
  • Rupeng Zhu
  • Fengxia Lu
Original Paper
  • 62 Downloads

Abstract

Introduction

Based on the characteristics of the helicopter main reduction gearbox, and combined with the advantages of face gear and cylindrical gear power dividing, a new configuration of helicopter main gearbox with twice split paths is proposed. A bending–torsional coupled dynamic model of the system is developed through the lumped parameter method, and the influence of stiffness, damping and backlash are considered.

Methods

The dynamic equation is solved by Runge–Kutta method, and the load sharing and the dynamic load coefficients are obtained, as well as their variation with the backlash.

Results

Results show that with the increase of the backlash, the load-sharing coefficient decreases, the dynamic load coefficient increases, but the other drive stages are almost unaffected. Compared with split torque stages and power confluence stages, the load sharing and dynamic load coefficient of power input stages are the most sensitive to the backlash of the power input stage, and the appropriate increase of the backlash can effectively improve the dynamic properties.

Conclusion

Therefore, in order to obtain better dynamic performance, it is necessary to allocate the backlash reasonably.

Keywords

Face gear Split torque Load sharing Dynamic load coefficient 

List of Symbols

b

Backlash

c

Meshing damping

cDm, cifp, cijsjh

Torsional damping of the corresponding shaft

e

Eccentric error

fl(Yt)

Gap function

Fifx, Fify, Fifz

Component forces of the meshing force of the face gear pairs

Fijx, Fijy

Component force on the split shaft

Finmf, Finpjs,FinBjh

Meshing forces of Zm and Zif, Zip and Zijs, ZB and Zijh

Fipx, Fipy, Fipz

Component forces on duplicate shaft

Fl

Meshing force

Fmx, Fmz

Component force on the input shaft

FBx, FBy

Component force on the output shaft

Gl

Dynamic load coefficient

Im, Iif, Iip, Iijs, Iijh, IB

Moment of inertia of Zm, Zif, Zip, Zijs, Zijh and ZB

km

Average meshing stiffness

k0

Variation amplitude of meshing stiffness

KDm, Kifp, Kijsjh, KBo

Torsional stiffness of the input shaft, duplicate shaft, split shaft and output shaft

Kl,

Meshing stiffness

Kipx, Kipy, Kipz

Support stiffness of duplicate shaft

Kinmf, Kinpjs, KinBjh

Time-varying meshing stiffness of Zif and Zm, Zip and Zijs, ZB and Zijh

Kmx, Kmz

Support stiffness of input shaft

mm, mif, mip, mijs, mijh, mB

Lumped mass of Zm, Zif, Zip, Zijs, Zijh and ZB

Pl

Static load of gear pairs

Ωimf, Ωijs, Ωijh

Load sharing coefficient

ribp, ribjs, ribjh, rbB

Base circle radius of Zip, Zijs, Zijh and ZB

rif

Equivalent meshing radius of face gear

rifp, rijsjh

Equivalent radius of duplicate shaft and split shaft

rm

Radius of pitch circle of Zm

rDm, rBo

Equivalent radius of the input shaft and output shaft

TD, To

Input torque and the load

Xinp, Yinp, Zinp

Displacement of duplicate shaft along the coordinate direction

Xij, Yij

Transverse displacement of split shaft

Xnm, Znm

Transverse and axial displacement of input shaft

XB, YB

Transverse displacement of output shaft

Zif, Zijh

Face gear, the pinion of power confluence stage

Zip, Zijs

Driving and driven gear of split torque stage

φD, φm, φB, φo

Torsional displacement of input, Zm, ZB and output

φif, φip, φijs, φijh

Torsional displacement of gear Zif, Zip, Zijs and Zijh

θip, θij, θiB, θB

Installation angle

i

R, L

j

1, 2

l

inmf, inpjs and inBjh

Notes

Acknowledgements

The work is fully supported by National Natural Science Foundation of PRC (Grant No. 51475226).

References

  1. 1.
    White G (1974) New family of high-ratio reduction gear with multiple drive paths. Proc Inst Mech Eng 188(1):281–288CrossRefGoogle Scholar
  2. 2.
    White G (1974) Design study of a 375 kW helicopter transmission with split-torque epicyclic and bevel drive stages. Proc Inst Mech Eng C J Mech Eng Sci 197(4):213–224CrossRefGoogle Scholar
  3. 3.
    Smirnov G (1990) Multiple-power-path nonplanetary main gearbox of the Mi-26 heavy-lift transport helicopter, Vertiflite. Mil Design Bureau, Moscow, pp 20–23Google Scholar
  4. 4.
    Gokcek M (2012) Mechanical Engineering. InTech, Rijeka, CroatiaCrossRefGoogle Scholar
  5. 5.
    Heath GF, Bossler RB Jr (1993) Advanced rotorcraft transmission (ART) program-final report. NASA Contractor Report 191057, Lewi, USAGoogle Scholar
  6. 6.
    Handschuh RE, Lewicki DG, Heath GF, et al (1996) Experimental evaluation of face gears for aerospace drive system application, NASA Technical Memorandum 107227, San Diego, USAGoogle Scholar
  7. 7.
    Krantz TL (1994) Dynamics of a split torque helicopter transmission, NASA TM-106410, USAGoogle Scholar
  8. 8.
    Krantz TL, Rashidi M (1995) Vibration analysis of a split path gearbox. In: 31st AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, San Diego, USAGoogle Scholar
  9. 9.
    Yang Z, Wang S, Fan Y (2008) Nonlinear dynamics characteristics of split torque gear transmission system. Chin J Mech Eng 44(7):52–57CrossRefGoogle Scholar
  10. 10.
    Gui Y, Zhu R, Bibo F et al (2014) Impact of torsional stiffness on dynamic load sharing of cylindrical gear split-torque transmission system. J Aerosp Power 29(9):2265–2268Google Scholar
  11. 11.
    Dong J, Wang S, Lin H et al (2015) Parameters effect on dual-path helical gear transmission dynamic load and load sharing characteristic. J Aerosp Power 30(5):1260–1266Google Scholar
  12. 12.
    Jin GH, Xiong YP, Gui YF et al (2017) Sensitive parameter and its influence law on load sharing performance of double input split torque transmission system. J Mech Sci Technol 5(6):583–595Google Scholar
  13. 13.
    Litvin FL, Fuentes A, Howkins M (2001) Design, generation and TCA of new type of asymmetric face-gear drive with modified geometry. Comput Methods Appl Mech Eng 190(43):5837–5865CrossRefGoogle Scholar
  14. 14.
    Litvin FL, Fuentes A, Zanzi C et al (2002) Face-gear drive with spur involute pinion: geometry, generation by a worm, stress analysis. Comput Methods Appl Mech Eng 191(25):2785–2813CrossRefGoogle Scholar
  15. 15.
    Li Z, Zhu R (2010) Load tooth contact analysis on face gear driver. J Nanjing Univ Aeronaut Astronaut 42(2):219–223Google Scholar
  16. 16.
    Chen G, Chen G, Li Y et al (2009) Dynamic response analysis of gear drive with face-gears. J Aerosp Power 24(10):2391–2396Google Scholar
  17. 17.
    Yang Z, Wang S, Fan Y et al (2010) Nonlinear dynamics of face-gear transmission system. J Vib Shock 29(9):218–221Google Scholar
  18. 18.
    Hu Z, Tang J, Chen S et al (2013) Effect of mesh stiffness on the dynamic response of face gear transmission system. ASME J Mech Des 135(7):1–7Google Scholar
  19. 19.
    Jin G, Zhu R, Li Z et al (2011) Impact of coefficient of tooth width on bending stress of face gear. J Cent South Univ 42(5):1303–1309Google Scholar
  20. 20.
    Wang J, Wang Y (2005) Combination resonance of spur gear system analyzed using multi-scale approach. J Xian Univ Technol 21(1):5–10Google Scholar
  21. 21.
    Li G, Guangbin Yu, Wen J et al (2008) Method of multiplescalesin solving nonlinear dynamic diffrential equations of gear system. J Jilin Univ 38(1):75–79Google Scholar
  22. 22.
    Li W, Wang L, Chang S et al (2013) Impact of tooth surface friction on harmonic resonance of gear system. J Jilin Univ 43(5):1290–1294Google Scholar
  23. 23.
    Yao H, Qi X, Mao L et al (2013) Incremental harmonic balance method for coupled bending and torsional vibration in planetary gear system. J Northeast Univ 34(10):1452–1455MathSciNetGoogle Scholar
  24. 24.
    Zhang Z, Chen Y (2014) Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential. Appl Math Mech 35(4):423–436MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang X, Wang Y, Zhao X et al (2015) Study on super-harmonic resonance for gear transmission based on teeth surface friction. J Mech Sci Technol 29(11):4631–4638CrossRefGoogle Scholar
  26. 26.
    Li H, Chen Y, Hou L et al (2016) Periodic response analysis of a misaligned rotor system by harmonic balance method with alternating frequency/time domain technique. Science China Technol Sci 59(11):1717–1729CrossRefGoogle Scholar
  27. 27.
    Wang S, Zhu C, Song C et al (2017) Effects of gear modifications on the dynamic characteristics of wind turbine gearbox considering elastic support of the gearbox. J Mech Sci Technol 31(3):1079–1088CrossRefGoogle Scholar
  28. 28.
    Chen R, Zhou J, Sun W (2018) Dynamic characteristics of a planetary gear system based on contact status of the tooth surface. J Mech Sci Technol 32(1):69–80CrossRefGoogle Scholar
  29. 29.
    Zhu Z, Zhu R, Bao H et al (2011) Impact of run out and meshing frequency errors on dynamic load-sharing for encased differential herringbone train. J Aerosp Power 26(11):2601–2609Google Scholar

Copyright information

© Krishtel eMaging Solutions Private Limited 2019

Authors and Affiliations

  1. 1.National Key Laboratory of Science and Technology on Helicopter TransmissionNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations