Effect of Piezoelectric Patch Size and Material on Active Vibration Control of Wind Turbine Blades

  • Wael G. Abdelrahman
  • Ahmed Z. Al-GarniEmail author
  • Sherif I. Abdelmaksoud
  • Ayman Abdallah
Original Paper



The purpose of this study is to investigate the effect of piezoelectric actuator patch size and material on the active vibration control of wind turbine blades.


This work builds on a recently developed numerical technique to reduce vibrations in wind turbine blades. Control action is achieved by bonding a piezoelectric actuator on the upper surface of the blade and a similar piezoelectric sensor on the blade’s lower surface. An approximate analytical method is used to solve the governing equations to obtain dynamic characteristics of the smart blade. Modal coordinates are used to obtain the model in state space form, then a linear quadratic regulator controller is used to provide active control.


The system is solved for different piezoelectric patch sizes and materials. Results show that increasing the values of piezoelectric stress/charge (\(e_{31}\)) increases both the maximum blade displacement and required actuation force.


Using piezoelectric patches with reduced (\(e_{31}\)) can effectively decrease blade vibrations.


Active vibration control Wind turbine blade Piezoelectric patches Smart materials Approximate analytical methods 


  1. 1.
    Achawakorn K, Jearsiripongkul T (2012) Vibration analysis of exponential cross-section beam using Galerkin’s method. Int J Appl Sci Technol 2(6):7–13Google Scholar
  2. 2.
    Bazoune A, Khulief YA (1992) A finite beam element for vibration analysis of rotating tapered timoshenko beams. J Sound Vib 156(1):141–164CrossRefzbMATHGoogle Scholar
  3. 3.
    Kumar GVR, Sujatha C (2010) Forced vibration analysis of wind turbine rotor. Adv Vib Eng 9(3):285–296Google Scholar
  4. 4.
    Crawley EF, De Luis J (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA J 25(10):1373–1385CrossRefGoogle Scholar
  5. 5.
    Han J, Rew K, Lee I (1997) An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor. Smart Mater Struct 6(5):549–558CrossRefGoogle Scholar
  6. 6.
    Zhang J, He L, Wang E, Gao R (2008) A LQR controller design for active vibration control of flexible structures. In: Proceedings of the 2008 IEEE Pacific-Asia workshop on computational intelligence and industrial application, vol 01, pp 127–132Google Scholar
  7. 7.
    Zhang J, He L, Wang E, Gao R (2009) Active vibration control of flexible structures using piezoelectric materials. In: Proceedings of the 2009 international conference on advanced computer control, pp 540–545Google Scholar
  8. 8.
    Manjunath TC, Bandyopadhyay B (2006) Smart control of cantilever structures using output feedback. Int J Sim Syst Sci Technol 7(4–5):51–68Google Scholar
  9. 9.
    Manjunath TC, Bandyopadhyay B (2004) Vibration control of a smart structure using periodic output feedback technique. Asian J Control 6(1):74–87CrossRefGoogle Scholar
  10. 10.
    Roy T, Chakraborty D (2009) Genetic algorithm based optimal control of smart composite shell structures under mechanical loading and thermal gradient. Smart Mater Struct 18(11):115006 (12 pp)Google Scholar
  11. 11.
    Kumar A, Chhabra D (2013) Design of neural network controller for active vibration control of cantilever plate with piezo-patch as sensor/actuator. Int J Modern Eng Res 3(4):2481–2488Google Scholar
  12. 12.
    Zoric ND, Simonovic AM, Mitrovic ZS, Stupar SN (2012) Optimal vibration control of smart composite beams with optimal size and location of piezoelectric sensing and actuation. J Intell Mater Syst Struct 24(4):499–526CrossRefGoogle Scholar
  13. 13.
    Abdelmaksoud SI (2014) Optimal active vibration suppression of smart composite wind turbine blades. Master thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi ArabiaGoogle Scholar
  14. 14.
    Manwell JF, McGowan JG, Rogers AL (2009) Wind energy explained: theory, design and application. Wiley, UKCrossRefGoogle Scholar
  15. 15.
    Ladson CL, Center LR (1996) Computer program to obtain ordinates for NACA airfoils. National Aeronautics and Space Administration, Langley Research CenterGoogle Scholar
  16. 16.
    Li Y, Liu J, Wang Y (2008) Design approach of weighting matrices for LQR based on multi-objective evolution algorithm. In: 2008 international conference on information and automation, vol. 2, pp 1188–1192Google Scholar
  17. 17. (2014) Acoustic transducers, composites, hydrophones, echo sounders & piezoelectric ceramics by Sensor Technology Ltd.’, 2014. [Online]. Accessed 10 May 2015
  18. 18. (2014) Piezoceramic materials & properties 2014. [Online]. Accessed 10 May 2015

Copyright information

© Krishtel eMaging Solutions Private Limited 2018

Authors and Affiliations

  • Wael G. Abdelrahman
    • 1
  • Ahmed Z. Al-Garni
    • 1
    Email author
  • Sherif I. Abdelmaksoud
    • 1
  • Ayman Abdallah
    • 1
  1. 1.King Fahd University Of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations