Advertisement

Interceram - International Ceramic Review

, Volume 67, Issue 6, pp 8–13 | Cite as

Ceramic Membranes for the Separation of Plasma Enhancement Gases

  • Domenico De Meis
  • E. Serra
  • S. Tosti
  • M. Richetta
  • A. Tati
  • G. Bruni
Research and Development Ceramic Membranes

Abstract

Low and medium Z impurity seeding gases, or plasma enhancement gases (PEGs) will be injected into the plasma of a Tokamak to convert the plasma thermal energy to ultraviolet and soft X-ray radiation. Possible PEGs are nitrogen, neon, argon, xenon and other inert gases. for the exhaust processing system of the demonstration fusion reactor (DEMO), the use of inorganic membranes was recently taken into consideration. Two commercial ceramic membranes (produced by Atech Innovations GmbH, Germany) were tested at a permeation apparatus built at ENEA Casaccia laboratories. Single gas permeances for H2, He, Ar and N2 were measured with a pressure drop across the membranes between 10 Pa up to 130 kPa at room temperature. For both membranes the permeance order follows the Knudsen regime. The Knudsen permeance measured for the two membranes are on the order of 10−7–10−8. The selectivities found are low (similar to ideal Knudsen).

Keywords

ceramic membranes plasma enhancement gases DEMO gas selectivity permeance 

Notes

Acknowledgment

The authors thank all colleagues for their help and support. In particular, they express their sincere gratitude to Dr. Rich Ciora for his continuous support in this field.

References

  1. [1]
    Nakano, T. et al.: Contribution of Ne ions to radiation enhancement in JT-60U divertor plasmas. J. Nuclear Mater. 438 (2013) S291–S296CrossRefGoogle Scholar
  2. [2]
    Reinke, M.L. et al.: Effect of N2. Ne and Ar seeding on Alcator C-Mod H-mode confinement. J. Nuclear Mater. 415 (2011) S340–S344CrossRefGoogle Scholar
  3. [3]
    Igitkhanov, Y. et al.: Operational margins and impact of particle exhaust in DEMO, 4th IAEA DEMO Programme Workshop, KIT, Karlsruhe 15–18 Nov. 2016Google Scholar
  4. [4]
    Tosti, S. et al.: Ceramic membranes for processing plasma enhancement gases. https://doi.org/10.1016/j.fusengdes.2017.01.010CrossRefGoogle Scholar
  5. [5]
    De Meis, D.: Overview on porous inorganic membranes for gas separation. RT/2017/5/ENEAGoogle Scholar
  6. [6]
    Ventkataraman, V.K. et al.: Potential applications of microporous inorganic membranes to the separation of industrial gas mixtures. Key Eng. Mater. 61–62 (1992) 347–352CrossRefGoogle Scholar
  7. [7]
    Lu, G.Q.: Inorganic membranes for hydrogen production and purification: A critical review and perspective. J. Colloid Interface Sci. 314 (2007) 589–603CrossRefGoogle Scholar
  8. [8]
    De Meis, D.: Gas transport through porous membranes. RT/2017/7/ENEAGoogle Scholar
  9. [9]
    Li, K.: Ceramic membranes for separation and reaction. Wiley, Chichester, West Sussex, England (2007), ISBN 9780470014400 DOI:10.1002/9780470319475CrossRefGoogle Scholar
  10. [10]
    Lundin, S.T., Way, J.D. et al.: Dense inorganic membranes for hydrogen separation. In: Membranes for gas separation. Ed: M.A. Carreon, World Scientific, Singapore (2017), ISBN 978-981-3207-70-7Google Scholar
  11. [11]
    Serra, E. et al.: Hydrogen permeation measurements on alumina. J. Am. Ceram. Soc. (2005) [1] 15–18Google Scholar
  12. [12]
    Serra, E. et al.: Oxygen- and hydrogen-permeation measurements on-mixed conducting SrFeCo0.5Oy ceramic membrane material. Renewable Energy 33 (2008) 241–247, presented at EMRs 2006CrossRefGoogle Scholar
  13. [13]
  14. [14]
    Caravella, A. et al.: Coupled influence of non-ideal diffusion and multilayer asymmetric porous supports on Sieverts law pressure exponent for hydrogen permeation in composite PD-based membranes. Int. J. Hydrogen energy 39 (2014) 2201–2214CrossRefGoogle Scholar
  15. [15]
    R. Ciora, personal communicationGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • Domenico De Meis
    • 1
    • 3
  • E. Serra
    • 2
  • S. Tosti
    • 1
  • M. Richetta
    • 3
  • A. Tati
    • 2
  • G. Bruni
    • 4
  1. 1.Fusion and Nuclear Safety Department, C.R. FrascatiENEAFrascati (Roma)Italy
  2. 2.Department for Sustainability, C.R. CasacciaENEASanta Maria di Galeria (Rome)Italy
  3. 3.Department of Industrial EngineeringUniversity of Rome Tor VergataRomeItaly
  4. 4.CIRDER, Tuscia UniversityViterboItaly

Personalised recommendations