Interceram - International Ceramic Review

, Volume 67, Issue 6, pp 44–49 | Cite as

Study on the Sintering Mechanism of Y2O3 on CaZrO3 Ceramic

  • Jie-fu Lang
  • Hui-min Zhang
  • Jie-gang YouEmail author
  • Xiao-fang Zhang
  • Xu-dong Luo
Research and Development Sintering


In order to research the sintering mechanism of Y2O3 on CaZrO3, CaZrO3 was synthesized by solid reaction using analytical ZrO2 and CaCO3 as raw materials and Y2O3 as additive. The liner change rate, the relative density, XRD and the microstructure of the CaZrO3 samples were determined, and the effect of Y2O3 on sintering of CaZrO3 was researched. The results show that the sintering property of CaZrO3 is enhanced by adding Y2O3. When the content of Y2O3 is lower than 2 % (mass-%), the lattice volume of CaZrO3 increases to 0.262 nm3, which is attributed to Zr4+ being replaced by Y3+ in the CaZrO3 crystal. However, the content of Y2O3 is up to 4 %, and the lattice volume decreases due to Ca2+ being replaced by Y3+. The liner change rate of the samples increases with increasing Y2O3 additive. When Y2O3 is 4 %, the liner change rate of CaZrO3 reaches maximum (26.9 %). The relative density of the samples increases from 63.99 to 84.45 % with increasing addition of Y2O3, and the average grain size of CaZrO3 increases from 1.64 to 2.65 μm when the additive increases from 0 to 4 %.


CaZrO3 Y2O3 sintering ceramic substitution solid solution 


  1. [1]
    Booth, F., Garrido, L., Aglietti, E., Silva, A., Pena, P., Baudin, C.: CaZrO3-MgO structural ceramics obtained by reaction sintering of dolomite-zirconia mixtures. J. Eur. Ceram. Soc. 36 (2016) 2611–2626CrossRefGoogle Scholar
  2. [2]
    Schaffoner, S., Fruhstorfer, J., Faßauer, C., Freitag, L., Jahn, C., Aneziris, C.G.: Influence of in situ phase formation on properties of calcium zirconate refractories. J. Eur. Ceram. Soc. 37(2017) 305–313CrossRefGoogle Scholar
  3. [3]
    Szczerba, J., Pedzich, Z.: The effect of natural dolomite admixture on calcium zirconate-periclase materials microstructure evolution. Ceram. Int. 36 (2010) 535–547CrossRefGoogle Scholar
  4. [4]
    Lee, W.J., Wakahara, A., Kim, B.H.: Decreasing of CaZrO3 sintering temperature with glass frit addition. Ceram. Int. 31 (2005) 521–524CrossRefGoogle Scholar
  5. [5]
    Pollet, M., Marinel, S.: Low temperature sintering of CaZrO3 using lithium fluoride addition. J. Eur. Ceram. Soc. 23 (2003) 1925–1933CrossRefGoogle Scholar
  6. [6]
    Booth, F., Garrido, L., Aglietti, E., Silva, A., Pena, P., Baudin, C.: CaZrO3-MgO structural ceramics obtained by reaction sintering of dolomite-zirconia mixtures. J. Eur. Ceram. Soc. 36 (2016) 2611–2626CrossRefGoogle Scholar
  7. [7]
    Wei, L., Zhou, G., Zhang, A., Qingqing, D., Zhou, H., Jie, Z.: Preparation and luminescence properties of rare earth-doped calcium zirconate nanocrystal. J. Chin. Ceram. Soc. 39 (2011) 1729–1733 (in Chinese)Google Scholar
  8. [8]
    Koopmans, H., Velde, G., Gellings, P.: Powder neutron diffraction study of the perovskites CaTiO3 and CaZrO3. Acta Crystallogr. 39 (1983) 1323–1325Google Scholar
  9. [9]
    Islam, M.S., Davies, R.A., Gale, J.D.: Proton migration and defect interactions in the CaZrO3 orthorhombic perovskite: A quantum mechanical study. Chem. Mater. 13 (2001) 2049–2055CrossRefGoogle Scholar
  10. [10]
    Ustinovshchikov, Y.I.: A novel pressure-induced phase transition in CaZrO3. Crystengcomm. 16 (2014) 4441–4446CrossRefGoogle Scholar
  11. [11]
    Hou, Z.F.: Ab initio calculations of elastic modulus and electronic structures of cubic CaZrO3. Physica B. 403 (2008) 2624–2628CrossRefGoogle Scholar
  12. [12]
    Azhar, A.Z.A., Manshor, H., Ali, A.M.: XRD investigation of the effect of MgO addition on ZTA-TiO2 ceramic composites. Mater. Sci. Eng. 290 (2018) 1–7Google Scholar
  13. [13]
    Park, D.H., Son, K.Y., Lee, J.H., Kim, J.J., Lee, J.S.: Effect of ZnO addition in In2O3 ceramics: defect chemistry and sintering behavior. Solid State Ionics. 172 (2004) 431–434CrossRefGoogle Scholar
  14. [14]
    Teresa, B.M., Massimo, V., Vincenzo, B., Carlo, B., Paolo, N.: Incorporation of Er3+ into BaTiO3. J. Am. Ceram. Soc. 85 (2010) 1569–1575Google Scholar
  15. [15]
    Bassoli, M., Buscaglia, M.T., Bottino, C.: Defect chemistry and dielectric properties of Yb3+: CaTiO3 perovskite. J. Appl. Phys. 103 (2008) 225–241CrossRefGoogle Scholar
  16. [16]
    Qi, J.Q., Li, L.T., Wang, Y.L., Gui, Z.L.: Analysis of XRD for Y2O3 doping processing in BaTiO3 ceramics. Rare Metal Mat. Eng. 31 (2002) 237–240Google Scholar
  17. [17]
    An, D., Luo, X.D., Liu, P.C., Xie, Z.P., Li. T.: Effects of Y2O3 doping on sintering properties and microstructure of CaTiO3 ceramics. Chin. J. Mech. Eng. 42 (2018) 53–57Google Scholar
  18. [18]
    Lu, D.Y., Han, D.D., Liu, Q.L., Wang, Y.D., Sun, X.Y.: Structure and dielectric properties of Ce and Ca co-doped BaTiO3 ceramics. Key. Eng. Mater. 680 (2016) 184–188CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • Jie-fu Lang
    • 1
  • Hui-min Zhang
    • 2
  • Jie-gang You
    • 1
    Email author
  • Xiao-fang Zhang
    • 1
  • Xu-dong Luo
    • 1
  1. 1.School of High Temperature Materials and Magnesium Resource EngineeringUniversity of Science and Technology LiaoningAnshanChina
  2. 2.Dalian Best Justicial Sheng Hongyuan Testing Technology Co. Ltd.LiaoningChina

Personalised recommendations