Advertisement

Interceram - International Ceramic Review

, Volume 67, Supplement 1, pp 22–31 | Cite as

Nanotechnology in Refractory Castables — An Overview

  • R. Sarkar
Refractories Forum Nanotechnology
  • 4 Downloads

Abstract

In recent times, nanotechnology has gained significant attention in the field of refractory research. As the unshaped refractory, especially the castable, is becoming of prime importance in refractory research, a good amount of work is going on globally to study the effect of nanotechnology on castables. The Effect of different nano-oxide binders, formed from colloidal bonding agents and nano-additives is also important. Conventional bonding materials, like, high-alumina cement, have drawbacks in the processing steps (mainly drying) and with respect to properties developed. The use of colloidal silica as an alternative binder has improved this condition and is being practiced commercially, but restrictions on high temperature applications have encouraged the use of other colloidal systems, namely alumina, mullite, spinel, sols, etc. Nanoparticles are also present in the castable system from binders like hydratable alumina, additives like microsilica, etc. are also present in the castable system and influence the properties developed. Nano scaled additives are also added to reduce the energy consumption and to improve the densification process at lower temperatures. In this paper, various aspects of the contribution and effect of nanotechnology, on the development of refractory castables are discussed.

Keywords

nanotechnology refractory castable binder colloidal systems additives 

References

  1. [1]
    Perkins, W.W. (Ed): Ceramic Glossary. The American Ceramic Society, Columbus, Ohio, USA (1984) ISBN 13: 9780916094614Google Scholar
  2. [2]
    Sarkar, R.: Refractory Technology: Fundamentals and Applications, CRC Press, Florida, USA (2016) ISBN 13: 9781498754255Google Scholar
  3. [3]
    Lee, W.E., Vieira, W., Zhang, S., Ahari, K.G., Sarpoolaky, H., Parr, C.: Castable refractory concrete. Intern. Mat. Rev. 46 (2001) [3] 145-167Google Scholar
  4. [4]
    ISO 1927-1:012 Monolithic (unshaped) refractory products, Part 1: Introduction and classification.Google Scholar
  5. [5]
    Banerjee, S.: Monolithic Refractories, a comprehensive Handbook. World Scientific: The American Ceramic Society, Westerville, USA (1998) ISBN 13: 9789810231200Google Scholar
  6. [6]
    Ningsheng, Z., Shuhe, H., Sanhua, Z.: Advances in modern refractory castables. China’s Refract. 13 (2004) [2] 3–12Google Scholar
  7. [7]
    Zhou, N.: New castables and their role in advancements in monolithic refractories, Part 1. Interceram 55 (2006) [1] 24–26Google Scholar
  8. [8]
    Krietz, L.: Refractory Castables. In: Refractories Handbook. Ed. C.A. Schacht, Marcel Dekker Inc., New York, (2004) 259–285, ISBN 13: 9780824756543Google Scholar
  9. [9]
    Nagai, B.: Recent advances in castable refractories. Taikabutsu Refract. 9 (1987) [1] 2–9Google Scholar
  10. [10]
    Parr C., Wohrmeyer, Ch.: The advantages of calcium alumina cement as a castable bonding system. Proc. of St Louis Section Meeting of American Ceramic Society, USA (2006) 20Google Scholar
  11. [11]
    Banerjee, S.: Recent developments in monolithic refractories. Am. Ceram. Soc. Bull. 77 (1998) [10] 59–63Google Scholar
  12. [12]
    Hongo, Y.: ρ-alumina bonded castable refractories. Taikabutsu Overseas 9 (1988) [1] 35–38Google Scholar
  13. [13]
    Kockegey-Lorenz, R.; Buchel, G.; Buhr, A.; Aroni, J.M.; Racher, R.P.: Improved workability of calcia-free alumina binder alphabond for non-cement castables. Proc. 47. Inter. Colloq. on Refractories, Verlag Stahleisen GmbH, Aachen, Germany (2004) 67–71Google Scholar
  14. [14]
    Ma, W., Brown, P.W.: Mechanisms of the reaction of hydratable aluminas. J. Am. Ceram. Soc. 82 (1999) [2] 453–456Google Scholar
  15. [15]
    Iler, R.K.: The chemistry of silica: Solubility, polymerization, colloid and surface properties and biochemistry. Wiley, New York, (1979) 866 (ISBN 13: 9780471024040)Google Scholar
  16. [16]
    Banerjee, S.: Versatility of gel bond castable/pumpable refractories. Refract. Appl. and News 6 (2001) [1] 1–3Google Scholar
  17. [17]
    Musikant, S.: What every engineer should know about ceramics. Preface, Marcel Dekker Inc., New York, (1991) (ISBN 139780824784980)Google Scholar
  18. [18]
    Hornyak, G.L., Moore, J.J., Tibba:ls, H.F., Dutta, J.: Fundamentals of nanotechnology, CRC Press, Florida, US (2008) (ISBN 13: 9781420048032)Google Scholar
  19. [19]
    Tamura, S., Ochiai, T., Takanaga, S., Nakamura, H.: Nano-Tech. refractories — 1: The development of the nano structural matrix. Proc. Unified Inter. Tech. Conf. on Refractories, Osaka, Japan, October 19–22, (2003) 517–520Google Scholar
  20. [20]
    Takanaga, S., Ochiai, T., Tamyra, S., Nakamura, H.: Nano-tech refractories 2: The development of the nano structural matrix to MgO-C bricks, Proceedings of the 8. UNITECR-03, Osaka, Japan, October 19–22 (2003) 521–524Google Scholar
  21. [21]
    Guimaraes, R., Lee, E.W.: Nanotechnology for the refractories industry: A foresight perspective. Refract. Eng. 12 (2007) 12–19Google Scholar
  22. [22]
    Garbers-Craig, A.M.: How cool are refractory materials? J. S. Afr. Inst. Min. Metall. 108 (2008) 491Google Scholar
  23. [23]
    Kuznecov, D., Nemtinov, A., Shaleiko, A.: Promises of using of nano materials in technology of refractories. New Refract. 4 (2009) 6Google Scholar
  24. [24]
    Braulio, M.A.L., Morbioli, G.G., Medeiros, J., Gallo, J.B., Pandolfelli, V.C.: Nanobonded wide temperature range designed refractory castables. J. Am. Ceram. Soc. 95 (2012) 1100Google Scholar
  25. [25]
    Luz, A.P., Silva Neto, A.B., Santos Jr., T., Medeiros, J., Pandolfelli, V.C.: Mullite-based refractory castable engineering for the petrochemical industry. Ceram. Int. 39 (2013) 9063Google Scholar
  26. [26]
    Luz, A.P., Santos, T., Pandolfelli, V.C., Medeiros, J.: High-alumina boron-containing refractory castables. Int. J. Appl. Ceram. Technol. 11 (2014) 977Google Scholar
  27. [27]
    Ismael, M.R., Anjos, R.D., Salomão, R., Pandolfelli, V.C.: Colloidal silica as a nano structured binder for refractory castables. Refract. Appl. News. 11 (2006) 16Google Scholar
  28. [28]
    Braulio, M.A.L., Tontrup, C., Medeiros, J., Pandolfelli, V.C.: Colloidal alumina as a novel castable bonding system. Refract. World Forum 3 (2011) 136Google Scholar
  29. [29]
    Anderson, M.: Better refractories through nanotechnology. Ceram. Ind. Mag. 155 (2005) 29Google Scholar
  30. [30]
    Das, S.K., Sarkar, R., Mondal, P.K., Mukherjee, S.: No cement high-alumina self flow castable. Am. Ceram. Soc. Bull. 82 (2003) [2] 55–59Google Scholar
  31. [31]
    Sarkar, R., Mukherjee, S., Ghosh, A.: Gel bonded Al2O3-SiC-C based blast furnace trough castable. Am. Ceram. Soc. Bull. (https://doi.org/www.ceramicbulletin.org) 85 (2006) [5] 9101–9105Google Scholar
  32. [32]
    Singh, A.K., Sarkar R.: Effect of binders and distribution coefficient on the properties of high-alumina castables. J. Austr. Ceram. Soc. 50 (2014) [2] 93–98Google Scholar
  33. [33]
    Singh, A.K., Sarkar R.: Synthesis and characterization of alumina sol and its use as binder in no cement high-alumina refractory castables. Int. J. Appl. Ceram. Technol. 12 (2015) [S3] E54–E60Google Scholar
  34. [34]
    Singh, A.K., Sarkar R.: High-alumina castables: Effect of alumina sols and distribution coefficients. Trans. Ind. Ceram. Soc. 74 (2015) [4] 225–231Google Scholar
  35. [35]
    Singh, A.K., Sarkar, R.: Nano mullite bonded refractory castable composition for high temperature applications. Ceram. Inter. 42 (2016) [11] 12937–12945Google Scholar
  36. [36]
    Singh, A.K., Sarkar, R.: Development of spinel sol bonded high pure alumina castable. Ceram. Inter. 42 (2016) [15] 17410–17419Google Scholar
  37. [37]
    Singh, A.K., Sarkar R.: High-alumina castables: A comparison among various sol-gel bonding systems. J. Austral. Ceram. Soc. 53 (2017) [2] 553–567Google Scholar
  38. [38]
    Lipinski, T.R., Drygalska, E., Tontrup, C.: The influence of additions of nanostructured Al2O3-powder on the high temperature strength of high-alumina refractories. Summary Booklet (Abstracts) Unified Inter. Tech. Conf. on Refractories, Salvador, Brazil. October 13–16 (2009) 12Google Scholar
  39. [39]
    Lipinski, T.R., Tontrup, C.: The use of nano-scaled alumina in alumina-based refractory materials, Proc. Unif. Int. Tech. Conf. Refract. Dresden, Germany, September 18–21 (2007) 391–393Google Scholar
  40. [40]
    Otroj, S., Marzban, R., Nemati, Z.A., Sajadi, N., Nilforoushan, M.R.: Behavior of alumina-spinel self-flowing castables with nano-alumina particles addition. Ceram. Silik. 53 (2009) 98Google Scholar
  41. [41]
    Arasu, V.C., Adak, S., Chattopadhyay, A.K., Kamath, C.D.: Influence of nano additives on thermo mechanical properties of alumina castables. Summary Booklet (Abstracts) Unified Inter. Tech. Conf. on Refractories, Salvador, Brazil, October 13–16 (2009) 24Google Scholar
  42. [42]
    Ghasemi-Kahrizsangi, S., Dehsheikh, H.G., Karamian, E., Ghasemi-Kahrizsangi, A., Hosseini, S.V.: The influence of Al2O3 nanoparticles addition on the microstructure and properties of bauxite self-flowing low-cement castables. Ceram. Int. 43 (2017) 8813Google Scholar
  43. [43]
    Otroj, S., Daghighi, A.: Microstructure and phase evolution of alumina-spinel self-flowing refractory castables containing nano-alumina particles. Ceram. Inter. 37 (2011) [3] 1003–1009Google Scholar
  44. [44]
    Yaghoubi, H., Sarpoolaky, H., Golestanifard, F., Souri, A.: Influence of nano silica on properties and microstructure of high-alumina ultra-low cement refractory castables. Iranian J. Mater. Sci. & Eng. 9 (2012) [2] 50–58Google Scholar
  45. [45]
    Wang, H., Bi, Y., Han, L., Meng, G., Zhou, N., Zhang, H., Zhang, S.: Effects of silica sol on the preparation and high-temperature mechanical properties of silicon oxynitride bonded SiC castables. Ceram. Int. 43 (2017) 10361Google Scholar
  46. [46]
    Badiee, S.H., Otroj, S.: Non-cement refractory castables containing nano-silica: performance, microstructure, properties. Ceramics-Silikáty 53 (2009) [4] 297–302Google Scholar
  47. [47]
    Badiee, S.H., Otroj, S.: The effect of nano-titania addition on the properties of high- alumina low cement self flowing refractory castables. Ceramics-Silikáty 55 (2011) 319Google Scholar
  48. [48]
    Gogtas, C., Lopeza, H., Konstantin, S.: Effect of nano-YSZ and nano-ZrO2 additions on the strength and toughness behavior of self-flowing alumina castables. Ceram. Int. 42 (2016) 1847Google Scholar
  49. [49]
    Gogtas, C.: Development of nano-ZrO2 reinforced self-flowing low and ultra low cement refractory castables. PhD Thesis, University of Wisconsin Milwaukee (2012)Google Scholar
  50. [50]
    Mukhopadhyay, S., Das Poddar, P.K: Role of nanocrystalline spinel additive on the properties of low cement castable refractories. Proc. Int. Conf. on Nanomaterials: Synthesis, Characterisation and Application, McGraw-Hill, 42-6 November, Kolkata, India (2004) 350–360Google Scholar
  51. [51]
    Ghosh, S., Sen, S., Maiti, T., Mukhopadhyay, S.: Influence of gel-derived nanocrystalline spinel in a high-alumina castable: Part 1. Ceram. Int. 31 (2005) [2] 333–347Google Scholar
  52. [52]
    Mukhopadhyay, S., Pal, P., Nag, B., Jana, P.: Influence of gel-derived nanocrystalline spinel in a high-alumina castable: Part 2. Ceram. Inter. 33 (2007) [2] 175–186Google Scholar
  53. [53]
    Khalil, N.M., Wahsh, M.M.S., Ewais, E.M.M., Hassan, M.B., Mehrez, S.M.: Improvement of mullite and magnesia-based refractory castables through addition of nano-spinel powder. Int J. Appl. Ceram. Tech. 10 (2013) [4] 655–670Google Scholar
  54. [54]
    Nouri-Khezrabad, M., Braulio, M.A.L., Pandolfelli, V.C., Golestani-Fard, F., Rezaie, H.R.: Nano-bonded refractory castables. Ceram. Int. 39 (2013) 3479Google Scholar
  55. [55]
    Viehland, D., Li, J.F., Yuan, L.J., Xu, Z.: Mesostructure of calcium silicate hydrate (C-S-H) gels in portland cement paste: Short-range ordering, nanocrystallinity, and local compositional order. J. Am. Ceram. Soc. 79 (1996) 1731Google Scholar
  56. [56]
    Antonovic, V., Stonys, R., Pundiene, I., Prosycevas, I., Fataraitė, F.: Investigation of structure formation in complex binder. Mater. Sci. 15 (2009) 343Google Scholar
  57. [57]
    Myhre, B., Hundere, A.M.: On the influence of superfines in high-alumina castables. Proc. Int. Colloq. Refract. Aachen, Germany (1996) 184–188Google Scholar
  58. [58]
    Myhre, B., Sandberg, B.: The use of microsilica in refractory castables. Proc. Int. Seminar on Monolithic Refract. Mater. Tehran, Iran (1997) 113–140Google Scholar
  59. [59]
    Lee, W.E., Moore, R.E.: Evolution of in situ refractories in the 20. Century. J. Am. Ceram. Soc. 81 (1998) 1385Google Scholar
  60. [60]
    Innocentini, M.D.M., Cardoso, F.A., Paiva, A.E.M., Pandolfelli, V.C.: Dewatering refractory castables. Am. Ceram. Soc. Bull. 83 (2004) 9101Google Scholar
  61. [61]
    Innocentini, M.D.M., Cardoso, F.A., Akiyoshi, A.M.M., Pandolfelli, V.C.: Drying stages during the heating of high-alumina, ultra-low cement refractory castables. J. Am. Ceram. Soc. 86 (2003) 1146Google Scholar
  62. [62]
    Cardoso, F.A, Innocentini, M.D.M., Akiyoshi, M.M., Pandolfelli, V.C.: Effect of curing conditions on the properties of ultralow cement refractory castables. Refract. Appl. News. 9 (2004) 12Google Scholar
  63. [63]
    Cardoso, F.A, Innocentini, M.D.M., Miranda, M.F.S., Valenzuela, F.A.O., Pandolfelli, V.C.: Drying behavior of hydratable alumina-bonded refractory castables. J. Eur. Ceram. Soc. 24 (2004) 797Google Scholar
  64. [64]
    Masaryk, J.S.: Development and use of low cement self flow castables. Proc. Unified Inter. Tech. Conf. on Refract., Sao Paulo, Brazil, October 312–November 3 (1993) 527–538Google Scholar
  65. [65]
    Bhattachariya, K., Chintaiah, P., Chakraborty, D.P., Mukhopadhyay, M.S.: Ultra low cement castables: a new generation of trough bodies for increased cast house life. Interceram 47 (1998) [4] 249–251Google Scholar
  66. [66]
    Studart, A.R., Pileggi, R.G., Jhong, W., Pandolfelli, V.C.: Processing of zero cement self-flow high-alumina refractory castables by matrix rheological control. Am. Ceram. Soc. Bull. 77 (1198) 60Google Scholar
  67. [67]
    Souri A. R., Mirhadi B., Kashani Nia F.: The effect of nano- structured colloidal silica on the properties of tabular alumina castables. Interceram 57 (2008) 414Google Scholar
  68. [68]
    Vance, M.W., Moody, K.J.: Steel plant refractories containing alpha bond hydratable alumina binders. Alcoa Tech. Bull. USA (1996)Google Scholar
  69. [69]
    Anderson, M.W., Shah, S.: Pumpable casting composition and method of use. US Patent 5494267, (1996)Google Scholar
  70. [70]
    Connors, C.W., Anderson, M.W.: Colloidal silica refractory system for an electric arc furnace. US Patent 6528011, (2003)Google Scholar
  71. [71]
    Sarkar, R., Das, S.K., Mandal, P.K., Mukherjee, S.N., Dasgupta, S., Das, S.K.: Fibre reinforced no cement self flow high-alumina castable: A study. Trans. Ind. Ceram. Soc. 62 (2003) [1] 1–4Google Scholar
  72. [72]
    Sarkar, R., Kumar, A., Das, S.P., Prasad, B.: Silica sol bonded high-alumina castable: Effect of reduced sol. Refract. World Forum, 7 (2015) [2] 83–87Google Scholar
  73. [73]
    Ismael, M.R.. Salomão, R., Pandolfelli, V.C.: Refractory castables based on colloidal silica and hydratable alumina. Am. Ceram. Soc. Bull. 89 (2007) 58–61Google Scholar
  74. [74]
    Hiemenz, P.C., Rajagopalan, R.: Principles of colloid and surface chemistry. 3. ed. CRC Press, New York, (1997) (ISBN 13: 9780824793975)Google Scholar
  75. [75]
    Cao, G.: Nanostructures and nanomaterials. Imperial College Press, London, UK, (2004) (ISBN 13: 9789814322508)Google Scholar
  76. [76]
    Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51 (2006) 427–556Google Scholar
  77. [77]
    Yu, J., Yang, J., Huang, Y.: The transformation mechanism from suspension to green body and the development of colloidal forming. Ceram. Int. 37 (2011)1435–1451Google Scholar
  78. [78]
    Jiquan, X., Yuntao, P., Dayong, X., Xuesong, M.: The characteristics of silica-sol combining refractories. Adv. Mater. Res. 3962–398 (2012) 288–291Google Scholar
  79. [79]
    Sarkar, R., Satpathy, A.: High-alumina self flow castable with different binders. Refract. World Forum 4 (2012) [4] 98–102Google Scholar
  80. [80]
    Zhu, X., Jiang, D., Tan, S., Zhang, Z.: Dispersion properties of alumina powders in silica sol. J. Eur. Ceram. Soc. 21 (2001) 2885Google Scholar
  81. [81]
    Souri, A., Kashaninia, F., Sarpoolaki, H.: Improving thermo-mechanical properties of tabular alumina castable via using nano-structured colloidal silica. Proc. 1. Inter. Conf. on Nanomaterials: Applications and Properties, Crimea, Ukraine, September 27–30 (2011) 254–259Google Scholar
  82. [82]
    Cao, F., Long, S., Wu, X., Telle, R.: Properties of sol-gel bonding castables. Key Eng. Mater. 3362–338 (2007) 1484–1487Google Scholar
  83. [83]
    Han, K.R., Park, S.W., Kim, C.S., Yang, J.O.: International Patent WO 2011 / 115352, September (2011)Google Scholar
  84. [84]
    Magliano, M., Prestes, E., Medeiros, J., Veiga, J., Pandolfelli, V.C.: Colloidal silica selection for nanobonded refractory castables. Refract. Appl. News 15 (2010) 14Google Scholar
  85. [85]
    Chen, S.K., Cheng, M.Y., Lin, S.J., Ko, Y.C.: Thermal characteristics of Al2O3-MgO and Al2O3-spinel castables for steel ladles. Ceram. Int. 28 (2002) 811Google Scholar
  86. [86]
    Braulio, M.A.L., Tontrup, C., Medeiros, J., Pandolfelli, V.C.: Colloidal alumina as a refractory binder. Proc. 35. Alafar Congr., Peru, December 6–9 (2010) 10–13Google Scholar
  87. [87]
    Mukhopadhyay, S., Dutta, S., Majumdar, M., Kundu, A., Das, S.K.: Synthesis and characterization of alumina bearing sol for application in refractory castables. Ind. Ceram. 20 (2000) [2] 88–92Google Scholar
  88. [88]
    Ghosh, S., Majumdar, R., Sinhamahapatra, B.K., Nandy, R.N., Mukherjee, M., Mukhopadhyay, S.: Microstructures of refractory castables prepared with sol-gel additives. Ceram. Int. 29 (2003) 671–677Google Scholar
  89. [89]
    Mukhopadhyay, S.: Easy-to-use mullite and spinel sols as bonding agents in a high-alumina based ultra low cement castable. Ceram. Int. 28 (2002) 719–729Google Scholar
  90. [90]
    Singh, A.K.: Study on the effect of different sols on high-alumina castable refractory. PhD thesis, Nat. Inst. of Technol., Rourkela, India (2017)Google Scholar
  91. [91]
    Ismael, M.R., Salomão, R., Pandolfelli, V.C.: A combined binding system for refractory castables based on colloidal silica and hydratable alumina. Am. Ceram. Soc. Bull. 86 (2007) 58Google Scholar
  92. [92]
    Myhre, B., Sandberg, B.: Mullite formation in tabular alumina based refractory castables with hydraulic alumina as binder. Presented at The Am. Ceram. Soc. 97. Annual Meeting, OH, USA, April 30–May 3 (1995)Google Scholar
  93. [93]
    Lorenz, R., Buchel, G., Buhr, A., Aronni, J., Racher, R.: Improved workability of calcia free alumina binder alpha-bond for non-cement castables. Proc. Int. Colloq. Refract. Aachen, Germany, (2004) 67–71Google Scholar
  94. [94]
    Innocentini, M.D.M., Pardo, A.R.F., Pandolfelli, V.C.: Permeability of high- alumina refractory castables based on various hydraulic binders. J. Am. Ceram. Soc. 85 (2002) 1517Google Scholar
  95. [95]
    Pundene, I., Antonovich, V., Stonys, R.: Effect of composite deflocculant on the properties of medium-cement heat-resistant concrete. Refract. Indust. Ceram. 50 (2009) 441Google Scholar
  96. [96]
    Wohrmeyer, C., Alt, C., Kreuels, N.: Calcium aluminate aggregates for use in refractory castables. Presented at the 35. Am. Ceram. Soc. Symp. St. Louis, Missouri, USA, March (1999)Google Scholar
  97. [97]
    Braulio, M.A.L., Pandolfelli, V.C.: Tailoring the microstructure of cement-bonded alumina-magnesia refractory castables. J. Am. Ceram. Soc. 93 (2010) 2981Google Scholar
  98. [98]
    Braulio, M.A.L., Morbioli, G.G., Pandolfelli, V.C.: Advanced boron-containing Al2O3-MgO refractory castables. J. Am. Ceram. Soc. 94 (2011) 3467Google Scholar
  99. [99]
    Prestes, E., Luz, A.P., Pandolfelli, V.C.: Sintering effect of Al and a boron source in high-alumina nano-bonded refractory castables. Interceram-Refract. Man. II (2015) 177–181Google Scholar
  100. [100]
    Corbin, S., McIsaac, D. Differential scanning calorimetry of the stages of transient liquid phase sintering. Mater. Sci. Eng. A 346 (2003) 132Google Scholar
  101. [101]
    Amutha Rani, D., Gnanam, F.D.: Sol gel mullite as the self-bonding material for refractory applications. Ceram. Int. 26 (2000) 347–350Google Scholar
  102. [102]
    Mandal, B., Sarkar, R., Das Poddar, P.K.: Effect of different mullite precursors on the properties of low cement high-alumina castable. Ind. Ceram. 31 (2011) [3] 217–222Google Scholar
  103. [103]
    Mukhopadhyaya, S., Das Poddar, P.K.: Effect of preformed and in-situ spinels on microstructure and properties of a low cement refractory castable. Ceram. Int. 30 (2004) 369–380Google Scholar
  104. [104]
    Lührs, H., Fischer, R.X., Schneider, H.: Boron mullite: formation and basic characterization, Mater. Res. Bull. 47 (2012) 4031Google Scholar
  105. [105]
    Maizo, I.D.G., Luz, A.P., Pagliosa, C., Pandolfelli, V.C.: Boron sources as sintering additives for alumina-based refractory castables. Ceram. Int. 43 (2017) 10207Google Scholar
  106. [106]
    Auvray, J.M., Gault, C., Huger, M.: Microstructural changes and evolutions of elastic properties versus temperature in bonding phases of alumina and alumina-magnesia refractory castables. J. Eur. Ceram. Soc. 27 (2007) 3489Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ceramic Engineering NationalInstitute of TechnologyRourkelaIndia

Personalised recommendations