Interceram - International Ceramic Review

, Volume 67, Issue 6, pp 22–29 | Cite as

Effect of Titanium and Vanadium on Nanomullite Derived from Diphasic Precursor Gel

  • Jagannath RoyEmail author
  • Saikat Maitra
Research and Development Refractories


To process mullite ceramics, diphasic aluminosilicate gel was synthesized from inorganic salts by employing the sol-gel route. The process of mullitization was studied by FTIR, DTA and SEM analysis. The particle size of the mullite ceramics was found to be in the nanometer range. The gel was calcined at 800°C. To the calcined gel, oxides of titanium and vanadium were mixed separately. The powder masses were compacted at 100 MPa pressure and then sintered at different elevated temperatures. The mechanical and microstructural properties of the doped samples were studied, and it was found that both the oxides influenced the process of mullitization positively.


Mullite ceramics sol-gel inorganic salts additive TiO2 V2O5 


  1. [1]
    Aksay, I.A., Pask, J.A.: Stable and metastable equilibria in system SiO2-Al2O3.J. Eur. Ceram. Soc. 58 (1975) 507–512.CrossRefGoogle Scholar
  2. [2]
    Klug, F.J., Prochazka, S.: Doremus, R.H. Alumina-silica phase diagram in the mullite region. J. Am. Ceram. Soc. 70 (1987) 750–759.CrossRefGoogle Scholar
  3. [3]
    Schneider, H., Eberhard, E.: Thermal expansion of mullite.J. Am. Ceram. Soc. 73 (1990) 2073–2076.CrossRefGoogle Scholar
  4. [4]
    Hynes, A.P., Doremus, R.H.: High-temperature compressive creep of polycrystalline mullite. J. Am. Ceram. Soc. 74 (1991) 2469–2475.CrossRefGoogle Scholar
  5. [5]
    Kollenberg, W., Schneider, H.: Microhardness of mullite at temperatures to 1000 °C. J. Am. Ceram. Soc. 72 (1989) 1739–1740.CrossRefGoogle Scholar
  6. [6]
    Aksay, A., Dabbs, D.M., Sarikaya, M.: Mullite for structural, electronic and optical applications. J. Am. Ceram. Soc. 74 (1991)2343–2358.CrossRefGoogle Scholar
  7. [7]
    Skoog, A.J., Moore, R. E.: Refractory of the past for the future: mullite and its use as a bonding phase. Am. Ceram. Soc. Bull. 67 (1988)1180–1185.Google Scholar
  8. [8]
    Ramakrishnan, V., Goo, E., Roldan, J.M., Giess, E.A.: Microstructure of mullite ceramics used for substrate and packaging applications. J. Mater. Sci. 27 (1992) 6127–6130.CrossRefGoogle Scholar
  9. [9]
    Mazel, F., Gonon, M., Fantozzi, G.: Manufacture of mullite substrates from andalusite for the development of thin film solar cells. J. Eur. Ceram. Soc. 22 (2002) 453–461.CrossRefGoogle Scholar
  10. [10]
    Shinohara, N., Dabs, D.M., Aksay, I.A.: Infrared transparent mullite through densification of monolithic gels at 1250 °C. Proc. SPIE—Int. Soc. Opt. Eng. 83 (1986) 19–24.Google Scholar
  11. [11]
    Cividanes, L.S., Campos, T.M.B., Rodrigues, L.A., Brunelli, D.D.: Thim, G.P. Review of mullite synthesis routes by solgel method. J. Sol-Gel Sci. Technol. 55 (2010) 111–125.CrossRefGoogle Scholar
  12. [12]
    Padmaja, P., Anilkumar, G.M., Warrier, K.G.K.: Characterization of stoichiometric sol-gel mullite by fourier transform infrared spectroscopy. Int. J. Inorg. Mater.3(2001) 693–698.CrossRefGoogle Scholar
  13. [13]
    Yu, J., Shi, J., Yuan, Q., Yang, Z., Chen, Y.: Effect of composition on the sintering and microstructure of diphasic mullite gels, Ceram. Int. 26 (2000) 255–263.CrossRefGoogle Scholar
  14. [14]
    Campos, A.L., Silva, N.T., Melo, F.C.L., Oliveira, M.A.S., Thim, G.P.: Crystallization kinetics of orthorhombic mullite from diphasic gels. J. Non-Cryst. Solids. 304 (2002) 19–24.CrossRefGoogle Scholar
  15. [15]
    Buljan, I., Kosanovic, C., Kralj, D.: Novel synthesis of nanosized mullite from aluminosilicate precursors. J. Alloy. Comp. 509 (2011) 8256–8261.CrossRefGoogle Scholar
  16. [16]
    Roy, J., Maitra, S.: Synthesis and Characterization of Sol-Gel-Derived Chemical Mullite. J. Ceram. Sci. Tech. 5 (2014) 57–62.Google Scholar
  17. [17]
    Murkhy, M. K., Hummel, F. A.: X-ray study of the solid solution of TiO2, Fe2O3, and Cr2O3 in mullite (3Al2O3•2SiO2). J. Am. Ceram. Soc. 43 (1960) 267–273.CrossRefGoogle Scholar
  18. [18]
    Baudin, C., Moya, J. S.: Influence of titanium dioxide on the sintering and microstructural evolution of mullite. J. Am. Ceram.Soc. 67 (1984) c–134–136.Google Scholar
  19. [19]
    Naga, S. M., El-Maghraby, A.: Preparation and characterization of porous fibrous mullite bodies with TiO2. Mater. Charact. 62 (2011) 174–180.CrossRefGoogle Scholar
  20. [20]
    Zhang, J., Wu, H., Zhang, S., Yu, J., Xiao, H.: Anisotropic grain growth in diphasic-gel-derived vanadium pentoxide doped mullite. J. Cryst. Growth. 364 (2013) 11–15.CrossRefGoogle Scholar
  21. [21]
    Roy, J., Bandyopadhyay. N., Das, S., Maitra, S.: Effect of TiO2 on the formation of mullite ceramics from diphasic Al2O3-SiO2 gel. Interceram 03–04 (2010) 213–217.Google Scholar
  22. [22]
    Roy, J., Bandyopadhyay. N., Das, S., Maitra, S.: Role of V2O5 on the formation of chemical mullite from aluminosilicate precursor. Ceram. Int. 36 (2010) 1603–1608.CrossRefGoogle Scholar
  23. [23]
    Roy, J., Bandyopadhyay. N., Das, S., Maitra, S.: Studies on the formation of mullite from diphasic Al2O3-SiO2 Gel by Fourier Transform Infrared Spectroscopy. Iran. J. Chem. Chem. Eng. 30 (2011) 65–71.Google Scholar
  24. [24]
    Okada, K.: Activation energy of mullitization from various starting materials, J. Eur. Ceram. Soc. 28 (2008) 377–382.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Maulana Abul Kalam Azad University of Technology (MAKAUT)India

Personalised recommendations