Advertisement

Interceram - International Ceramic Review

, Volume 67, Issue 5, pp 18–27 | Cite as

Addition of limestone at the expense of gypsum in Portland cement

  • Hassan H. M. Darweesh
  • E. A. Abou-El-Anwar
  • H. S. Mekky
Research and Development Cement
  • 21 Downloads

Abstract

The influence of the addition of limestone at the expense of gypsum in Portland cement was investigated. Results showed that with the gradual replacement of very fine limestone instead of gypsum the hydration process improves, enhances at all curing times until 90 days. On this basis, the hydration heat, bound water, free lime contents, bulk density, compressive strength improved, were enhanced, while the apparent porosity decreased. In contrast, the water/cement ratio, both the initial, the final setting times decreased. These results were confirmed with FTIR spectra, SEM-EDAX analysis. SEM showed the formation of carboaluminate hydrates in cement pastes containing limestone, CSH, SO4−2, CO3−2, whilst the peaks of EDAX showed elements of Al+3, Fe+3, Ca+2, Al2O3.

Keywords

cement gypsum limestone IR SEM-EDAX 

References

  1. [1]
    Bonavetti, V., Donza, H., Menéndez, G., Cabrera, O., Irassar, E.F.: Limestone filler cement in low w/c concrete: a rational use of energy. Cem. Conc. Res. 33 (2003) 865—871Google Scholar
  2. [2]
    Corinaldesi, V., Moriconi, G., Naik, T.R.: Characterization of marble powder for its use in mortar. Concrete, Construction, Building Mater. 24 (2010) 113—117Google Scholar
  3. [3]
    Demirel, B.: The effect of the using waste marble dust as fine sand on the mechanical properties of the concrete. Int. J. Phys. Sci. 5 (2010) [9], 1372—1380Google Scholar
  4. [4]
    Regourd, M.: Special cements with additions. Proc. 8th Congress on the Chemistry of Cements, Rio de Janeiro, Brazil 1 (1986), 119—229Google Scholar
  5. [5]
    El-Didamony, H., Salem, T., Gabr, N., Mohamed, T.: Limestone as a retarder, filler in limestone blended cement. Ceram.-Silik. 39 (1995) 15—19Google Scholar
  6. [6]
    Heikal, M., El-Didamony, H., Morsy, M.S.: Limestone-filled pozzolanic cement. Cem. Concr. Res. 30 (2000) 1827—1834Google Scholar
  7. [7]
    El-Didamony, H., El-Alfi, E.S.: Addition of limestone in the low heat Portland cement-Part II., Ceram.- Silik. 44 (2000) [4] 146—150.Google Scholar
  8. [8]
    Neville, A.M.: Properties of concrete. 5th Ed. Longman, Essex (UK), (2011) ISBN: 978-0-273-75580-7 (pbk.). http://www.pearsoned.co.ukGoogle Scholar
  9. [9]
    Hewlett, P.C.: Lea’s Chemistry of Cement, Concrete. 5th Ed., John Wiley & Sons Inc. New York, Toronto (2004), ISBN: 0470 24416 XGoogle Scholar
  10. [10]
    El-Alfi, E.S., Darweesh, H.H.M., El-Didamony, H.: Addition of limestone in the low heat Portland cement-Part I., Ceramics Silikáty, 44 (2000) [3], 109—113Google Scholar
  11. [11]
    Regourd, M.,: Addition of limestone in the low heat Portlant cement. Proc. 8th Int. Congr. Chem. Cem., Rio de Janeiro, 3 (1986) 199—229Google Scholar
  12. [12]
    Negro, A., Abbiati, G., Cussino L.: Calcium carbonate substitute in cement. Proc. 8th Int. Congr. Chem. Cem. Rio de Janiero, 3 (1986) 109—113Google Scholar
  13. [13]
    Tsivilis, S., Chaniotakis, E., Kakali, G., Batis, G.: An analysis of the properties of Portland limestone cements, concrete. Cem. Concr. Compo. 24 (2002) 371—378Google Scholar
  14. [14]
    Vernet, C., Noworyta, G.: Mechanisms of limestone reactions in the system C3A CaSO4. H2O-CH-CaCO3-H): Competition between calcium monocarbo-, monosulfo-aluminate hydrates formation. Proc. 9th Int. Congr. Chem. Cem., 4 New Delhi, India (1992) 430—436Google Scholar
  15. [15]
    El-Alfi, S., Radwan, A.M., Abed El-Aleem, S.: Effect of limestone fillers, silica fume pozzolana on the characteristics of sulfate resistant cement pastes. Ceram.-Silik. 48 (2004) [1] 29—33Google Scholar
  16. [16]
    ASTM-Standards C114-77: Standard test method for chemical analysis of hydraulic cement. (1978) 87—127Google Scholar
  17. [17]
    Hume, W., Madgwick, T., Moon, F., Sadek, H.: Preliminary geologic report on Gabal Tanka area. Petroleum Research Bulletin (Cairo) 4 (1920) 112—119Google Scholar
  18. [18]
    Youssef, M.I., Abdel Malik, W.M.: Micropaleontological zonation of the Tertiary rocks of the Tayiba-Feiran area, West-Central Sinai, Egypt. Proc. 6th Arab Science Congress, Damascus (1969) 675—684Google Scholar
  19. [19]
    Abul-Nasr, R.A.A., Thunell, R.C.: Eocene eustatic sea level changes, evidence from western Sinai, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology 58 (1987)1—9Google Scholar
  20. [20]
    Jackson, C.A.-L., Gawthorpe, R.L., Leppard, C.W., Sharp, I.R.: Rift-initiation development of normal fault blocks: insights from the Hammam Faraun fault block Suez Rift, Egypt. J. Geol. Soc. of London 163 (2006) 165—183Google Scholar
  21. [21]
    Abul Nasr, R.A.: Re-evaluation of the Upper Eocene rock units in West-Central Sinai. MERC Ain Shams University, Earth Science Series 4 (1990) 234—247Google Scholar
  22. [22]
    Refaat, A.A., Imam, M.M.: The Tayiba Red Beds: Transitional marine-continental deposits in the precursor Suez Rift, Sinai, Egypt. J. African Earth Sci. 26 (1999) [3] 467—506Google Scholar
  23. [23]
    Jackson, Ch.A.L.: Sedimentology and significance of an early syn-rift paleovalley, Wadi Tayiba, Suez Rift, Egypt. J. African Earth Sci. 52 (2008) 62—68Google Scholar
  24. [24]
    ASTM-Standards C187-86: Standard test method for normal water of consistency of hydraulic cement. (1993) 148—150Google Scholar
  25. [25]
    ASTM-Standards, PA, ASTM-C187-98: Standard test method for normal consistency of hydraulic cement. (2002) 163—166Google Scholar
  26. [26]
    ASTM Designation C191.04-: Standard test method for normal consistency, setting time of hydraulic cement, Annual Book of ASTM Standards (2008) 172—174Google Scholar
  27. [27]
    ASTM —Standards C191-92: Standard test method for setting time of hydraulic cement. (1993) 866—868Google Scholar
  28. [28]
    ASTM-Standards, PA, C191-01a: Standard test method for time of setting of hydraulic cement by Vicat needle. (2002) 180—182Google Scholar
  29. [29]
    ASTM-Standards, C186-92: Determination of the heat of hydration of Portland cement pastes. (1992) 162—164Google Scholar
  30. [30]
    Krishnaswamy, K.T., Kamasundara, A., Khandekar, A.A.: Concrete Technology, Dhanpat Rai and Sons (1983) 1—11Google Scholar
  31. [31]
    Kondo, R., Abo-El-Enein, S.A., Diamon, M.: Kinetics, mechanisn of hydrothermal reaction of granulated blast furnace slag. Bull. Chem. Soc. Japan 48 (1975) 222—226Google Scholar
  32. [32]
    Darweesh, H.H.M.: Effect of combination of Some Pozzolanic Wastes on the Properties of Portlandcement Pastes. iiC l’italiana del Cemento 808 (2005) [4] 298—310Google Scholar
  33. [33]
    Darweesh, H.H.M., Abo-El-Suoud, M. R.: Quaternary cement composites from industrial byproducts to avoid the environmental pollution. J. EC-Chemistry 2 (2015) [1] 78—91Google Scholar
  34. [34]
    Darweesh, H.H.M.: Geopolymer cements from slag, fly ash, silica fume activated with sodium hydroxide, water glass. Interceram 66 (2017) [1] 226—231Google Scholar
  35. [35]
    Darweesh, H.H.M.: Mortar composites based on industrial wastes. Int. J. Mater. Lifetime 3 (2017) [1] 1—8, doi:  https://doi.org/10.12691/ijml-3-1-1
  36. [36]
    Darweesh, H.H.M., Youssef, H.: Preparation of 11 Å Al-substituted Tobermorite from Egyptian Trackyte Rock, its effect on the specific properties of Portland cement. Interceram 63 (2014) [7–8] 358—362Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  • Hassan H. M. Darweesh
    • 1
  • E. A. Abou-El-Anwar
    • 2
  • H. S. Mekky
    • 2
  1. 1.Refractories, Ceramics, Building Materials Department, National Research CentreDokki, CairoEgypt
  2. 2.Geological Sciences Department, National Research CentreDokki, CairoEgypt

Personalised recommendations