Interceram - International Ceramic Review

, Volume 67, Issue 5, pp 34–42 | Cite as

Electrical and optical property measurement of nickel-doped barium stannate synthesized by modified solid state sintering

  • Soumya MukherjeeEmail author
  • Asima Adak Maity
  • Mahua Ghosh Chaudhari
  • Siddhartha Mukherjee
Research and Development Electroceramics


Mechanical mixing of precursors followed by sintering at 1350 °C treated for 2 h were performed to synthesize nickel-doped barium stannate BaSn1-x NixO3 with x = 0.05, 0.10 and 0.15. The phase formation of synthesized material was identified by X-ray Diffractogram (XRD), which confirms a cubic perovskite structure as major constituent. The crystallite size and plane of orientation were calculated from the diffraction pattern. The morphological behaviour was studied from SEM images, and the chemical constituents of the synthesized materials were identified from EDX spectra. Bond formation and M—O coordination of the synthesized materials were identified from FTIR absorption spectra corresponding to symmetric and asymmetric stretches of bonding. Optical properties of the sintered samples were measured by UV—V spectroscopy. The bandgap of the synthesized material was calculated from the spectrograph. The photoluminescence characteristics were studied from PL spectra. The nanocrystalline behaviour of the material was assessed from HRTEM images and SAED patterns. The electrical measurements in terms of dielectric and ferroelectric properties were measured for various concentrations of doped materials.


Nanocrystalline bandgap luminescence dielectric ferroelectric microstructure phase analysis 



The authors are greatly indebted to the Department of Metallurgical and Materials Engineering, JU, Kolkata, India, for giving us the opportunity to take up this interesting project work. It is our privilege to convey our heartiest thanks to Mr. Sudhir Ghosh for the supporting XRD facilities, Dr. Jhimli Sarkar for UV—VIS, Mr. Uttam Kumar Ghorai and Mr. Nilesh Majumdar for photoluminescence and dielectric property studies, respectively. We also thank Dr. Nirmalya Das for the TEM facilities and Dr. Angshuman Sil, CGCRI, for providing the PE loop facilities.


  1. [1]
    Upadhyay, Shail., Parkash, Om., Devendra Kumar, Devendra.: Synthesis, structure and electrical behaviour of nickel-doped barium stannate. J. Alloy. Compd. 432 (2007) [1–2] 258–264CrossRefGoogle Scholar
  2. [2]
    Shimizu, Y., Fukuyama, Y., T. Narikiyo, T., Arai, H., Seiyama, T.: Perovskite-type oxides having semiconductivity as oxygen sensors. Chem. Lett. 14 (1985) 377–380CrossRefGoogle Scholar
  3. [3]
    Ostrick, B., Fleischer, M., Lampe, U., Meixner, H.: Preparation of stoichiometric barium stannate thin films: Hall measurements and gas sensitivities. Sens. Actuators B. 44 (1997) [1–3] 601–606CrossRefGoogle Scholar
  4. [4]
    Wei, Xiaoyong., Feng, Yujun., Hang, Lianmao., Xia, Song., Jin, Li., Xi Yao.: Abnormal C—V curve and clockwise hysteresis loop in ferroelectric barium stannate titanate ceramics. Mat. Sci. Eng. B-Solid. 120 (2005) [1-3] 64–67CrossRefGoogle Scholar
  5. [5]
    Upadhyay, Shail, Kavitha, P.: Lanthanum doped Barium Stannate for humidity sensor Mater. Lett. 61 (2007) [8–9] 1912–1915Google Scholar
  6. [6]
    Kocemba, I., Jedrzejewska, M. Wróbel, Szychowska, A., Rynkowski, J., Główka, M.: The properties of barium stannate and aluminum oxide-based gas sensor: The role of Al2O3 in this system. Sensors. Actuat. B-Chem. 121 (2007) [2] 401–405CrossRefGoogle Scholar
  7. [7]
    Yude, W., Xiaodan, S., Yanfeng, L., Zhenlai, Z., Xinghui, W.: Perovskite-type NickelSnO3 used as the ethanol sensitive material. Solid State Electron 44 (2000) [11] 2009–2014CrossRefGoogle Scholar
  8. [8]
    Wu, H. X., Wang, D. Y., H.L. Liu, L. H., Li, F. Y., Zhou, L. Z.: Preparation and gas-sensing properties of perovskite-type MSnO3 (M=Zn, Cd, Ni). Mater. Lett. 56 [5] (2002) 732–736CrossRefGoogle Scholar
  9. [9]
    Saryanarayana, L., Reddy, M., Manorama, V.S.: Nanosized spinel Nickel Fe2O4: A novel material for the detection of liquefied petroleum gas in air. Mater. Chem. Phys. 82 (2003) 21–26CrossRefGoogle Scholar
  10. [10]
    Singh, Sindhu., Singh, Prabhakar., Parkash, Om., Kumar, Devendra.: Structural and relaxor behavior of (Ba1-xLax)(Ti0.85Sn0.15)O3 ceramics obtained by solid state reaction. J. Alloy. Compd. 493 (2010) [1–2] 522–528CrossRefGoogle Scholar
  11. [11]
    Gao, Lina, Zhai, Jiwei, Song, Sannickelan, Yao, Xi.: Crystal orientation dependence of the out-of-plane dielectric properties for barium stannate titanate thin films. Mater. Chem. Phys. 124 (2010) [1] 192–195CrossRefGoogle Scholar
  12. [12]
    Davis Jr, L., Rubin, G.L.: Some Dielectric Properties of Barium-Strontium Titanate Ceramics at 3000 Megacycles. J. Appl. Phys. 24 (1953) [9] 1194–1197CrossRefGoogle Scholar
  13. [13]
    Johnson, M. K.: Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J. Appl. Phys. 33 (1962) [9] 2826–2831CrossRefGoogle Scholar
  14. [14]
    Basceri, C., Streifer, K.S., Kingon, I.A., Washer, R.: The dielectric response as a function of temperature and film thickness of fiber-textured (Ba,Sr)TiO3 thin films grown by chemical vapor deposition. J. Appl. Phys. 82 (1997) [5] 2497–2504CrossRefGoogle Scholar
  15. [15]
    Song, Sannickelan, Zhai, Jiwei, Gao, Lina, Yao, Xi.: Orientation-dependent dielectric properties of Ba(Sn0.15Ti0.85)O3 thin films prepared by sol—gel method. J. Phys. Chem. Solids. 70 (2009) [8] 1213–1217CrossRefGoogle Scholar
  16. [16]
    Varadan, V.K., Ghodgaonkar, D.K., Varadan, V.V., Kelly, J.F., Glikerdas, P.: Ceramic phase shifters for electronickelcally steerable antenna systems. Microwave. J. 35 (1992) [1] 116–122Google Scholar
  17. [17]
    Babbitt, R.W., Koscica, T.E., Drach, W.C.: Planar microwave electro-optic phase shifters. Microwave. J. 35 (1992) [6] 63–69Google Scholar
  18. [18]
    Sengupta, L.C., Sengupta, S.: Novel ferroelectric materials for phased array antennas. IEEE Trans, Ultrason. Ferroelectr. Freq. Control. 44 (1997) [4] 792–797CrossRefGoogle Scholar
  19. [19]
    Wensheng, Lu, Schimdt, H.: Lyothermal synthesis of nanocrystalline BaSnO3 powders. Ceram. Int. 34 (2008) [3] 645–649CrossRefGoogle Scholar
  20. [20]
    Subbarao, E.C.: Ferroelectrics. Ceramic dielectrics for capacitors. 35 (1981) [1] 143–148Google Scholar
  21. [21]
    R. Vivekanandan, R., Kutty, T.R.N.: Hydrothermal synthesis of Ba(Ti, Sn)O3 fine powders and dielectric properties of the corresponding ceramics. Ceram. Int. 14 (1988) [4] 207–216CrossRefGoogle Scholar
  22. [22]
    Mizoguchi, H., Woodward, P.W., Park, C., Keszler, D.A.: Strong near-infrared luminescence in BaSnO3. J. Am. Chem. Soc. 126 (2004) [31] 9796–9780CrossRefGoogle Scholar
  23. [23]
    Smith, M.G., Goodenough, J.B., Manthiram, A., Taylor, R.D., Peng, W., Kimbal, C.W.: Tin and antimony valence states in BaSn0.85Sb0.15O3-δ. J. Solid Chem. 98 (1992) [1] 181–186CrossRefGoogle Scholar
  24. [24]
    Yasukawa, Masahiro, Kono, Toshio, Ueda, Kazushige, Yanagi, Hiroshi, Hosono, Hideo: High-temperature thermoelectric properties of La-doped BaSnO3 ceramics. Mat. Sci. Eng. B-Solid. 173 (2010) [1–3] 29–32CrossRefGoogle Scholar
  25. [25]
    Cullity, B. D.: Elements of X-ray diffraction. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts (1956), ISBN 0-201-01174-3Google Scholar
  26. [26]
    James, K.K., Aravind, Arun., Jayaraj, M.K.: Structural, optical and magnetic properties of Fe-doped barium stannate thin films grown by PLD. Appl. Surf. Sci. 282 (2013) [1] 121–125CrossRefGoogle Scholar
  27. [27]
    Maity, Ashima., Mukherjee, Soumya., Chowdhury, M.G., Mukherjee, Siddhartha.: Phase evaluation of pure nanocrystalline barium stannate by two different milling Activations, Interceram 64 [6–7] (2015) 276–280Google Scholar
  28. [28]
    Köferstein, R., Abicht, J., Pippel, H.-P., Woltersdorf, E.: Phase evolution of a barium tin 1,2-ethanediolato complex to barium stannate during thermal decomposition. Thermochim. Acta 441 (2006) [2] 176–183CrossRefGoogle Scholar
  29. [29]
    Omeiri, S., Hadjarab, B., Bouguelia, A., Trari, M.: Electrical, optical and photoelectrochemical properties of BaSnO3-δ: Applications to hydrogen evolution. J. Alloy. Compd. 505 (2010) [2] 592–597CrossRefGoogle Scholar
  30. [30]
    Maity, Adak Asima, Soumya Mukherjee, Soumya, Chowdhury, M.G., Chakraborty, Tamali, Mukherjee, Siddhartha: Phase Evaluation, microscopy and band gap of Fe-doped nanocrystalline BaSnO3 by solid-sate sintering assisted with agate-mortar activation. Int. J. Current Eng. & Technol. 5 (2015) [6] 3829–3834Google Scholar
  31. [31]
    Alves, C.F.M., et al.: Influence of the modifier on the short and long range disorder of stannate perovskites. J. Alloy. Compd. 476 (2009) 507–512CrossRefGoogle Scholar
  32. [32]
    Charles, M.W.H., Nickel Jr., E.S. Gregory, E.S.: Physical Properties of Semiconductors. Prentice-Hall, Englewood Cliffs, New Jersey (1989) ISBN 9780136699958Google Scholar
  33. [33]
    Vidya, S., Rejith, P.P., Annamma, J., Solomon, S., Deepa, S.A., Thomas, J.K.: Electrical, optical and vibrational characteristics of nano structured yttrium barium stannous oxide synthesized through a modified combustion method. Mater. Res. Bull. 46 (2011) [10] 1723–1728CrossRefGoogle Scholar
  34. [34]
    Köferstein, R., Yakuphanoglu, F.: Semiconducting properties of Ge-doped BaSnO3 ceramic. J. Alloy. Compd. 506 (2010) [2] 678–682CrossRefGoogle Scholar
  35. [35]
    Burstein, E.: Anomalous optical absorption limit in InSb. Physiological Reviews 93 (1954) 632–633CrossRefGoogle Scholar
  36. [36]
    Moss, T.S.: The interpretation of the properties of Indium Antimonde. Proc. Physical Soc. London, Section B 67 (1954) [10] 775–782.CrossRefGoogle Scholar
  37. [37]
    Yasukawa, M., Kono, T., Ueda, K., Yanagi, Hi., Hosono, H.: High-temperature thermoelectric properties of La-doped BaSnO3 ceramics. Mat. Sci. Eng. B-Solid, 173 (2010) [1–3] 29–32CrossRefGoogle Scholar
  38. [38]
    Cerda, J., Arbiol, J., Dezanneau, G., Díaz, R., Morante, J.R.: Perovskite-type BaSnO3 powders for high temperature gas sensor applications. Sensor. Actuat. B-Chem. 84 (2002) [1] 21–25CrossRefGoogle Scholar
  39. [39]
    Singh, K.C., Nath, A.K., Laishram, R., Thakur, O.P.: Structural, electrical and piezoelectric properties of nanocrystalline tin-substituted barium titanate ceramics. J. Alloy. Compd. 509 (2011) [5] 2597–2601CrossRefGoogle Scholar
  40. [40]
    Nath, A.K., Singh, K.C., Laishram, R., Thakur, O.P.: Ferroelectric, piezoelectric and electrostrictive properties of Ba(Ti1-xSnx)O3 ceramics obtained from nanocrystalline powder. Mat. Sci. Eng. B-Solid 172 (2010) [2] 151–155.CrossRefGoogle Scholar
  41. [41]
    Cerda, J., Arbiol, J., Díaz, R., Dezanneau, G., Morante, J.R.: Synthesis of perovskite-type BaSnO3 particles obtained by a new simple wet chemical route based on a sol—gel process. Mater. Lett. 56 (2002) [3] 131—136Google Scholar
  42. [42]
    Maity, Adak Ashima, Mukherjee, Soumya, Chaudhuri, Ghosh Mahua, Mukherjee, Siddhartha: Phase evolution, microscopic analysis, optical and dielectric property evaluation of Co-doped BaSnO3 by mechanical mix assisted solid state sintering method. AIMS Material Science. 3 (2016) [3] 1281–1293CrossRefGoogle Scholar
  43. [43]
    Kumar, Ashok, Choudhary, R.N.P., Singh, B.P., Thakur, K. Awalendra: Effect of strontium concentration on electrical conduction properties of Sr-modified BaSnO3. Ceram. Int. 32 (2006) [1] 73–83CrossRefGoogle Scholar
  44. [44]
    Wei, Xiaoyong, Yao, Xi: Preparation, structure and dielectric property of barium stannate titanate ceramics. Mat. Sci. Eng. B-Solid. 137 (2007) [1–3] 184–188CrossRefGoogle Scholar
  45. [45]
    Rajamanickam, N., Soundarrajan, P., Jayakumar, K., Ramachandran, K.: Improve the power conversion efficiency of perovskite BaSnO3 nanostructures based dye-sensitized solar cells by Fe doping. Sol. Energ. Mat. Sol. C. 166 (2017) 69–77CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  • Soumya Mukherjee
    • 1
    Email author
  • Asima Adak Maity
    • 2
  • Mahua Ghosh Chaudhari
    • 3
  • Siddhartha Mukherjee
    • 4
  1. 1.Department of Mechanical and Automation EngineeringAmity University KolkataKolkata-700135India
  2. 2.Heritage Institute of TechnologyKolkata-700107India
  3. 3.School of Materials Science and NanotechnologyJadavpur UniversityKolkata-700032India
  4. 4.Department of Metallurgical and Materials EngineeringJadavpur UniversityKolkata-700032India

Personalised recommendations