Fabrication of Porous TiO2 Ceramics Using Corn Starch and Graphite as Pore Forming Agents

  • Riham M. KhattabEmail author
  • A. M. EL-Rafei
  • M. F. Zawrah
Research and Development Porous Ceramics


Two sources of pore former have been used; namely, starch and graphite to control porosity, pore sizes and pore shapes. The three batches were fabricated using 10 mass-% graphite, 5 mass-% graphite plus 5 mass-% starch and 10 mass-% starch, respectively. The dried green batches were subjected to fire at different temperatures, e.g. 1100, 1200 and 1300 °C for 1 h. The results revealed that the specimens containing 5 and 10 mass-% starch attained porous structure at different firing temperatures with micro pore sizes. The batch prepared using starch exhibited very high and sharply increased strength in comparison with those containing graphite and graphite plus starch. This is due to the formation of homogeneous foaming structure with smaller pore size and larger number of pores. Moreover, the strength of the batches fired at 1100 and 1200 °C was lower than that fired at 1300 °C .


TiO2 porous structure ceramics mechanical properties 


  1. [1]
    Lyckfeldt, O., Ferreira J.M.F.: Processing of porous ceramics by starch consolidation. J. Eur. Ceram. Soc. 18 (1998) 131–140CrossRefGoogle Scholar
  2. [2]
    Lin-Qi Tang, Wei Ni, Hong-Ying Zhao, Qun Xu, Jian-Xia Jiao: Preparation of macroporous TiO2 by starch microspheres template with assistance of supercritical CO2. Bio Resources 4 (2009) [1] 38–48Google Scholar
  3. [3]
    Zawrah, M.F., El Maghraby, A.A.: Utilization of rice straw ash in production of advanced porous ceramics composites. Interceram 56 (2007) [4] 250–255Google Scholar
  4. [4]
    Doong, R.A., Chang, S.M., Hung, Y.V., Kao, I.: Preparation of highly ordered titanium dioxide porous films: Characterization and photocatalytic activity. Separ. and Purif. Technol. 58 (2007) [1] 192–1991CrossRefGoogle Scholar
  5. [5]
    Lakshmi, B.B., Partisi, C.J., Martin, C.R.: Sol-gel template synthesis of semiconductor oxide micro-and nanostructures. J. Mater. Chem. 9 (1997) [11] 2533–2550CrossRefGoogle Scholar
  6. [6]
    Sun, J., Gao, L., Zhang, Q.: TiO2 tubes synthesized by using ammonium sulfate and carbon nanotubes as templates. J. Mater. Sci. Lett. 22 (2003) [5] 339–342CrossRefGoogle Scholar
  7. [7]
    Motojima, S., Suzuki, T., Noda, Y., Hiraga, A., Iwanaga, H., Hashishin, T., Hishikawa, S.: Microcoil templates using a sol-gel process. Chem. Phys. Lett. 378 (2003) [1–2] 111–116CrossRefGoogle Scholar
  8. [8]
    Caruso, R.A., Giersig, M., Willing, F., Antonietti, M.: Porous “coral-like” TiO2 structures produced by templating polymer gels. Langmuir 14 (1998) [22] 6333–6336CrossRefGoogle Scholar
  9. [9]
    Holland B.T., Blanford C.F., Stein, A.: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of pheroidal voids. Science 28 (1998) [5376] 538–540CrossRefGoogle Scholar
  10. [10]
    Bu, S.J., Jin, Z.G., Liu, X.X., Yang, L.R., Cheng, Z.J.: Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process. J. Eur. Ceram. Soc. 25 (2005) 673–679CrossRefGoogle Scholar
  11. [11]
    Caruso, R.A., Schattka, J.H.: Cellulose acetate templates for porous inorganic network fabrication. Adv. Mater. Lett. 12 (2000) [24] 1921–1923CrossRefGoogle Scholar
  12. [12]
    Shigapov, A.N., Graham, G.W., McCabe, R.W., Plummer Jr., H.K.: The preparation of high-surface area, thermally-stable, metal-oxide catalyst and supports by a cellulose templating approach. Appl. Catalysis A: General 210 (2001) [[sn1–2}] 287–300CrossRefGoogle Scholar
  13. [13]
    Wakayama, H., Itahara, H., Tatsuda, N., Inagaki, S., Fukushima, Y.: Nanoporous metal oxides synthesized by the nanoscale casting process using supercritical fluids. J. Mater. Chem. 13 (2001) [7] 2392–2396CrossRefGoogle Scholar
  14. [14]
    Rodriguez, P.R., Einert, L., Comet, M., Kighelmen, J., Fuzellier, H.: Synthesis of structure titanium dioxide from carbonaceous templates: Preparation of supported nanoscaled titania particles. Mater. Chem. and Phys. 106 (2007) [1] 102–108CrossRefGoogle Scholar
  15. [15]
    Doong, R.-A., Ckang, S.-M., Hung, Y.-C., Kao, I.-L.: Preparation of highly ordered titanium dioxide porous films: Characterization and photocatalytic activity. Separ. and Purif. Technol. 58 (2007) [1] 192–199CrossRefGoogle Scholar
  16. [16]
    Velev, O.D., Kaler, E.W.: Structured porous materials via colloidal crystal templating: From inorganic oxides to metals. Adv. Mater. 12 (2000) [7] 531–534CrossRefGoogle Scholar
  17. [17]
    Maisarah Mohamed Bazina, Muhd Amirudin Ahmata, Nurhanna Zaidana, Ahmad Fauzi Ismailb, Norhayati Ahmada: Effect of starch addition on microstructure and strength of ball clay membrane. J. Teknologi 69 (2014) [9] 117–120Google Scholar
  18. [18]
    Sanson, A., Pinasco, P., Roncari, E.: Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs. J. Eur. Ceram. Soc. 28 (2008) 1221–1226CrossRefGoogle Scholar
  19. [19]
    Wei Zhou, Ran Ran, Zongping Shao, Wanqin Jin, Nanping Xu: Synthesis of nano-particle and highly porous conducting perovskites from simple in situ sol-gel derived carbon templating process. Bull. Mater. Sci. 33 (2010) [4] 371–376CrossRefGoogle Scholar
  20. [20]
    Menchavez, R.L., Adavan, C.R.M., Calgas, J.M.: Starch consolidation of red clay-based ceramic slurry inside a pressure-cooking system. J. Mater. Res. 17 (2014) [1] 157–167CrossRefGoogle Scholar
  21. [21]
    Singh, N., Singh, J., Kaur, L., Sodhi, N.S., Gill, B.S.: Morphological, thermal and rheological properties of starches from different botanical sources — a review. Food Chem. 81 (2003) 219–231CrossRefGoogle Scholar
  22. [22]
    Menchave, R.L., Fuji, Z.M., Shirai, T., Kumazawa, T.: Electrically conductive porous alumina/graphite composite synthesized by starch consolidation with reductive firing. J. Eur. Ceram. Soc. 34 (2014) 717–729CrossRefGoogle Scholar
  23. [23]
    Shiba Shakti Deheria: Production of alumina based porous ceramics using graphite powder as the pore former. Thesis, Department of Ceramic Engineering, National Institute of Technology Rourkela (2014)Google Scholar
  24. [24]
    Yan, W., Li, N.: Pore-size distribution and strength of porous mullite ceramics. Am. Ceram. Soc. Bull. 85 (2006) [12] 9401–9406Google Scholar
  25. [25]
    Wahsh, M.M.S., Khattab, R.M., Zawrah, M.F.: Sintering and technological properties of alumina/zirconia/nano TiO2 ceramic composites. Mater. Res. Bull. 48 (2013) [4] 1411–1414CrossRefGoogle Scholar
  26. [26]
    Khattab, R.M., Dadr, H.A., Zawrah, M.F.: Effect of processing techniques on properties of porous TiO2 and TiO2/hydroxyapatite composites. Ceram. Inter. 44 (2018) [7] 8643–8649CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • Riham M. Khattab
    • 1
    Email author
  • A. M. EL-Rafei
    • 1
  • M. F. Zawrah
    • 1
  1. 1.Refractories, Ceramics and Building Materials Department, National Research CentreDokki, GizaEgypt

Personalised recommendations