Advertisement

Microporous Inorganic Membranes for Gas Separation and Purification

  • Domenico De Meis
  • M. Richetta
  • E. Serra
Research and Development Porous Ceramics
  • 12 Downloads

Abstract

The importance of inorganic membranes for gas separation and purification is analyzed. Although the cost of inorganic membranes is higher than that for polymeric membranes, they have higher permeance, selectivity and better resistance to higher pressure and temperature. The main materials used for porous inorganic membranes are alumina (Al2O3), silica (SiO2), zirconia (ZrO2), zeolite and carbon. Ceramics are compounds of metallic and non-metallic elements. They generally have a macroporous support, an intermediate layer and a small porous top layer. Because the Knudsen gas separation regime has a very low selectivity, various membrane surface modification techniques have started to be experimented with at a number of laboratories. The research focuses on materials that exhibit molecular sieving properties, such as silica, zeolites, MOFs (metal-organic frameworks), graphene and carbon. Finally, gas transport mechanisms through porous membranes are summarized.

Keywords

gas separation inorganic porous membranes ceramic membranes gas permeance mechanism 

List of symbols and abbreviations

MOFs

metal organic framework

SEM

scanning electron microscope

CVD

chemical vapor deposition

CVI

chemical vapor infiltration

aAB

separation factor of a component A over component B

Pvisc

viscous permeance (mol m−2 s−1 Pa−1)

ε

porosity

μ

viscosity [Pa s]

η

shape factor

r

pore radius [m]

pav

mean pressure [Pa]

L

thickness of the membrane (m)

PKn

Knudsen permeance [mol m−2 s−1 Pa−1]

v

molecular velocity [m s−1]

M

molecular weight of the diffusing gas (kg mol−1)

R

the gas constant (8.31445 J mol−1 K−1)

T

temperature [K]

F

permeation molar flux [mol s−1]

Pe

permeability coefficient, [mol m−1 s−1 Pa−1]

A

permeation area [m2]

P1

upstream gas partial pressure [Pa]

P2

downstream gas partial pressure [Pa]

GTR

gas transmission rate

λ

mean free path

Kn

Knudsen number

Kb

the Boltzmann constant

p

pressure [Pa]

dg

gas molecule diameter [m]

Notes

Acknowledgment

The authors thank all their colleagues for their help and support. In particular, D. De Meis expresses his sincere gratitude to Prof. Ted Oyama for his suggestions.

References

  1. [1]
    Baker, R.W.: Future directions of membrane gas separation technology. Ind. & Eng. Chem. Res. 41 (2000) 1393–1411CrossRefGoogle Scholar
  2. [2]
    Chen, X.Y.: Membrane gas separation technologies for biogas upgrading. RSC Advances 5 (2015) [31] 24399–24448, DOI: 10:1039/c5ra00666jCrossRefGoogle Scholar
  3. [3]
    Pingelley, C.N.: Membranes for gas separation, PhD thesis, University of Bath, November (2015)Google Scholar
  4. [4]
    Mulder, M.: Basic principles of membrane technology. Kluwer Academic Publishers, Netherlands, (1996)CrossRefGoogle Scholar
  5. [5]
    Abedini, R. et al.: Application of membrane in gas separation processes: Its suitability and mechanisms. Petroleum & Coal 52 (2010) 69–80Google Scholar
  6. [6]
    Keizer, K., Verweij, H.: Progress in inorganic membranes. Chemtech (1996) 37Google Scholar
  7. [7]
    Lin, Y.S.: Inorganic membranes for gas separation and purification. Membrane 3 (2006) 170–173Google Scholar
  8. [8]
    Zhang, W.: Experimental investigation on gas separation using porous membranes. Master Thesis, Technische Universität Berlin (2011)Google Scholar
  9. [9]
    Bhattacharyya, R.: Inorganic membranes for hydrogen isotope-helium separation in fusion energy research. Chem. Technol. 9 (2014) [6] 234–241, ISSN: 0974 - 7443Google Scholar
  10. [10]
    Cardoso, S.P. et al.: Inorganic membranes for hydrogen separation. Separation & Purification Rev. DOI: 10.1080/15422119.2017.1383917Google Scholar
  11. [11]
    Gitis, V., Rothenberg, G.: Ceramic membranes: New opportunities and practical applications. 1th edition, Wiley-VCH (2016), ISBN: 978-3-527-33493-3CrossRefGoogle Scholar
  12. [12]
    Amin, S.K. et al.: An overview of production and development of ceramic membranes. Inter. J. Appl. Eng. Res. 11 (2016) [12] 7708–7721, ISSN 0973-4562Google Scholar
  13. [13]
    Meinema, H.A. et al.,: Ceramic membranes for gas separation — recent developments and state of the art. Interceram 54 (2005) [2] 86–91Google Scholar
  14. [14]
    Lundin, S.T., Way, J.D. et al.: Dense inorganic membranes for hydrogen separation. In: Membranes for Gas Separation. Editor: M.A. Carreon (2017) World Scientific, Singapore, ISBN: 978-981-3207-70-7Google Scholar
  15. [15]
    Ebrahimi, M., Ehlen, F. et al.: Innovative ceramic hollow fiber membranes for recycling/reuse of oilfield produced water. Desalination and Water Treatment (2014), DOI: 10.1080/19443994.2014.947780Google Scholar
  16. [16]
    Li, K.: Ceramic membranes for separation and reaction. Wiley (2007), ISBN: 978-0-470-01440-0CrossRefGoogle Scholar
  17. [17]
    Soleimany, A. et al.: Recent progress in developments of membrane materials and modification techniques for high performance helium separation and recovery: A review. Chem. Eng. & Proc.: Process Intensification 122 (2017) 296–318, DOI: 10.1016/j.cep.2017.06.001CrossRefGoogle Scholar
  18. [18]
    Sunarso, J. et al.: Membranes for helium recovery: An overview of the context, materials and future directions. Separation & Purification Technol. 176 (2017) 335–383, DOI: 10.1016/j.seppur.2016.12.020CrossRefGoogle Scholar
  19. [19]
    Isobe, T. et al.: Preparation and gas permeability of the surface-modified porous Al2O3 ceramic filter for CO2 gas separation, J. Asian Ceram. Soc. 1 (2013) 65–70CrossRefGoogle Scholar
  20. [20]
    Koutsonikolas, D.E. et al.: Pore size reduction and performance upgrade of silica membranes with an ambient temperature C-ALD post treatment method. DOI: 10:1080/01496395.2011.560919Google Scholar
  21. [21]
    Barboiu, C. et al.: Development of new microporous silica membranes for gas separation. Proc. WHEC 16, 13–16 June (2006) Lyon, FranceGoogle Scholar
  22. [22]
    Ahn, S.J. et al.: Permeation properties of silica-zirconia composite membranes supported on porous alumina substrates. J. Membrane Sci. 526 (2017) 409–416, DOI: 10.1016/j.memsci.2016.12.023CrossRefGoogle Scholar
  23. [23]
    Khatib, S.J.: Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD). Separation & Purification Technol. 111 (2013) 20–42CrossRefGoogle Scholar
  24. [24]
    Aoki, K. et al.: Separation of gases with an A-type zeolite membrane. Ind. & Eng. Chem. Res. 39 (2000) 2245–2251CrossRefGoogle Scholar
  25. [25]
    Korelskiy, D. et al.: Efficient ceramic zeolite membranes for CO2/H2 separation. J. Mater. Chem. A 3 (2015) 12500–12506CrossRefGoogle Scholar
  26. [26]
    Kosinov, N.: Recent developments in zeolite membranes for gas separation. J. Membrane Sci. 499 (2016) 65–79CrossRefGoogle Scholar
  27. [27]
    de Vos, R.M. et al.: Improved performance of silica membranes for gas separation. J. Membrane Sci. 143 (1998) 37–51CrossRefGoogle Scholar
  28. [28]
    Koutsonikolas, D.E. et al.: Characterization of commercial and hybrid membranes using gas permeation and permporometry test. J. Membrane Sci. Res. 1 (2015) 130–134Google Scholar
  29. [29]
    Wall, Y. et al.: Gas transport through ceramic membranes under super-critical conditions. Desalination 250 (2010) 1056–1059CrossRefGoogle Scholar
  30. [30]
    Oyama, S.T. et al.: Review on mechanisms of gas permeation through inorganic membranes. J. Japan Petroleum Inst. 54 (2011) [5] 298–309CrossRefGoogle Scholar
  31. [31]
    Hamm, J.B.S. et al.: Recent advances in the development of supported carbon membranes for gas separation. Int. J. Hydrogen Energy 42 (2017) 24830–24845CrossRefGoogle Scholar
  32. [32]
    Sanyal, O. et al.: Next generation membranes — using tailored carbon-.127 (2018) 688–698Google Scholar
  33. [33]
    Hägg, M.B., Lie., J.A., Lindbråthen, A.: Carbon molecular sieve membranes: A promising alternative for selected industrial applications. Ann. N.Y. Acad. Sci. 984 (2003) 329–345CrossRefGoogle Scholar
  34. [34]
    Zhao, Z. et al.: Gas separation properties of metal organic framework (MOF-5) membranes. Ind. Eng. Chem. Res. 52 (2013) 1102–1108, DOI.org/10.1021/ie202777qCrossRefGoogle Scholar
  35. [35]
    Xu, Q.: Graphene and graphene oxide: Advanced membranes for gas separation and water purification. Inorganic Chem. Front. 2 (2015) 417–424, DOI: 10.1039/c4qi00230jCrossRefGoogle Scholar
  36. [36]
    Yoo, B.M. et al.: Graphene and graphene oxide membranes for gas separation applications, Current Opinion in Chemical Engineering 16 (2017) 39–47CrossRefGoogle Scholar
  37. [37]
    Kast, W. et al.: Mass transfer within the gas-phase of porous media. Int. J. Heat & Mass Transfer 43 (2000) 807–823CrossRefGoogle Scholar
  38. [38]
    Lu, G.Q.: Inorganic membranes for hydrogen production and purification: A critical review and perspective. J. Colloid and Interface Sci. 314 (2007) 589–603CrossRefGoogle Scholar
  39. [39]
    Turel, T.: Gas transmission trough microporous membranes. Dissertation, submitted to the Graduate Faculty of Auburn University, Alabama (USA), (2008)Google Scholar
  40. [40]
    van den Berg, G.B.: Diffusional phenomena in membrane separation processes. J. Membrane Sci. 73 (1992) 103–118CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fusion and Nuclear Safety Department, C. R. FrascatiENEAFrascati (Roma)Italy
  2. 2.Department of Industrial EngineeringUniversity of Rome Tor VergataRomaItaly
  3. 3.Department for Sustainability, C. R. CasacciaENEASanta Maria di Galeria (Roma)Italy

Personalised recommendations