Advertisement

Solution Combustion Synthesis of Alumina Spinel and its Characterization

  • S.R. Ghosh
  • Soumya Mukherjee
  • S. Banerjee
Research and Development Refractory Materials
  • 16 Downloads

Abstract

Refractories as liners play an important role in the metallurgical, glassmaking, steel and ceramic industries. Spinel-based magnesium aluminate is an excellent refractory oxide for the production of high temperature materials focusing on emerging science and technology. It offers the attractive combination of physical and chemical properties like high mechanical strength at elevated temperature, a high melting point, high chemical inertness and thermal stability. Normally, this refractory material is prepared by energy-intensive high temperature solid state processing. Is there a way to synthesize Magnesium aluminate spinel over a solution combustion low temperature chemical route?

Keywords

alumina spinel XRD FTIR morphology 

References

  1. [1]
    Zamboni, L.A., Caligaris, R.E.: Different compositions of MgO-C bricks used in ladle slag line. In: Proc. UNITECR’97, New Orleans, USA, (1997)Google Scholar
  2. [2]
    Aneziris, C.G., Borzov, D., Ulbricht, J.: Magnesia carbon bricks-a high-duty refractory material. Interceram Refract. Manual (2003) 22–27Google Scholar
  3. [3]
    Yamaguchi, A.: Control of oxidation-reduction in MgO-C refractories. Taikabutsu Overseas 4 (1984) [1] 32–36Google Scholar
  4. [4]
    Anan, K.: Wear of refractories in basic oxygen furnaces (BOF). Taikabutsu Overseas 21 (2001) [4] 241–246Google Scholar
  5. [5]
    Goto, K., Lee, W.: The “Direct Bond” in magnesia chromite and magnesia spinel refractories. J. Amer. Cer. Soc. 78 (1995) [7] 1753–1760CrossRefGoogle Scholar
  6. [6]
    Ganesh, I., Bhattacharjee, S., Saha, B.P., Johnson, R., Rajeshwari, K., Sengupta R.: An efficient MgAl2O4 spinel additive for improved slag erosion and penetration resistance of high-Al2O3 and MgO-C refractories. Ceram. Inter. 28 (2002) 245–253CrossRefGoogle Scholar
  7. [7]
    Pati, R.K., Pramanik, P.: Low-temperature chemical synthesis of nanocrystalline MgAl2O4 spinel powder. J. Am. Ceram. Soc. 83 (2000) [7] 1822–1824CrossRefGoogle Scholar
  8. [8]
    Salmans, J., Galicia, J.A., Wang, J.A. et al.: Synthesis and characterization of nanocrystallite MgAl2O4 spinels as catalysts support.J. Mater. Sci. Lett. 19 (2000) [12] 1033–1037CrossRefGoogle Scholar
  9. [9]
    Li, G.J., Sun, Z.R., Chen, C.H.et al.: Synthesis of nano crystalline MgAl2O4 spinel powders by a novel chemical method. Mater.Lett.61 (2007) [17] 3585–3588CrossRefGoogle Scholar
  10. [10]
    Mohapatra, D., Sarkar, D.: Preparation of MgO-MgAl2O4 composite for refractory application. J. Mater. Proc. Technol. 189 (2007) [1–3] 279–283CrossRefGoogle Scholar
  11. [11]
    Gusmano, G., Montesperelli, G., Traversa, E. et al.: Microstructure and electrical properties of MgAl2O4 thin films for humidity sensing. J. Am. Ceram. Soc. 76 (1993) [3] 743–750CrossRefGoogle Scholar
  12. [12]
    Li, J.G., Ikegami, T., Lee, J.H. et al.: Fabrication of translucent magnesium aluminium spinel ceramics. J. Am. Ceram. Soc. 83 (2000) [11] 2866–2868CrossRefGoogle Scholar
  13. [13]
    Ganesh, I., Bhattacharjee, S., Saha, B.P.et al.: A new sintering aid for magnesium aluminate spinel. Ceram. Inter. 27 (2001) [7] 773–779CrossRefGoogle Scholar
  14. [14]
    Adak, A.K., Sahanthe, S.K., Pramanik, P.: Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique. J. Mater. Sci. Lett. 16 (1997 ) [3] 234-235CrossRefGoogle Scholar
  15. [15]
    Naskar, M.K., Chattarjee, M.: Magnesium aluminate (MgAl2O4) spinel powders from water-based sols. J. Am. Ceram. Soc. 88 (2005) [1] 38–44CrossRefGoogle Scholar
  16. [16]
    Bickmore, C.R., Waldner, K.F., Treadwell, D.R.: Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminum double alkoxide. J. Am. Ceram. Soc.79 (1996) [5] 1419–1423CrossRefGoogle Scholar
  17. [17]
    Wang, C.T., Lin, L.S., Yang, S.J.: Preparation of MgAl2O4 spinel powders via freeze-drying of alkoxide precursors. J. Am. Ceram. Soc. 75 (1992) [8] 2240–2243CrossRefGoogle Scholar
  18. [18]
    Tavangarian, F., Emadi, R.: Synthesis and characterization of pure nanocrystalline magnesium aluminate spinel powder. J. Alloys. Compds. 489 (2010) [2] 600–604CrossRefGoogle Scholar
  19. [19]
    Montolouillour, V., Massior, D., Douy, A.: Characterization of MgAl2O4 precursor powders prepared by aqueous route. J. Am. Ceram. Soc. 82 (1999) [12] 3299–3304CrossRefGoogle Scholar
  20. [20]
    Ganesh, I., Srinivas, B., Johnson, R. et al.: Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders. J. Eur. Ceram. Soc. 24 (2004) [2] 201–207CrossRefGoogle Scholar
  21. [21]
    Bhaduri, S., Bhaduri, S B.: Microstructural and mechanical properties of nanocrystalline spinel and related composites. Ceram. Inter. 28 (2002) [2] 153–158CrossRefGoogle Scholar
  22. [22]
    Varnier, O., Hovnanian, N., Larbot, A. et al.: Sol-Gel synthesis of magnesium aluminate spinel from a heterometallic alkoxide. Mater.Res. Bull. 29 (1994) 479–488CrossRefGoogle Scholar
  23. [23]
    Minani, T.: Instant synthesis of nanoscale spinel aluminates. J. Alloys. Compds. 315 (2001) [1/2] 123–128CrossRefGoogle Scholar
  24. [24]
    Domanski, D., Urretavizcaya, G., Castro, F.J. et al.: Mechanochemical synthesis of magnesium aluminate spinel powder at room temperature. J. Am. Ceram. Soc. 87 (2004) [11] 2020–2024CrossRefGoogle Scholar
  25. [25]
    Angappan, S., Berchmans, L.J., Augustin, C.O.: Sintering behavior of MgAl2O4 — a prospective anode material. Mater. Lett. 58 (2004) [17/18] 2283–2289CrossRefGoogle Scholar
  26. [26]
    Ganesh, I., Srinivas, B., Johnson, R. et al.: Effect of fuel type on morphology and reactivity of combustion synthesized MgAl2O4 powders. Brit. Ceram. Trans. J. 101 (2002) [6] 247–256CrossRefGoogle Scholar
  27. [27]
    Ganesh, I., Srinivas, B., Johnson, R. et al.: Effect of preparation method on sinterability and properties of nano crystalline and ZrO2-MgAl2O4 materials. Brit. Ceram. Trans. J. 102 (2003) [3] 119–128CrossRefGoogle Scholar
  28. [28]
    Reveron, H., Gutierrez-Campos, D., Rodriguez, R.M. et al.: Chemical synthesis and thermal evolution of MgAl2O4 spinel precursor prepared from industrial gibbsite and magnesia powder. Mater.Lett. 56 (2002) [1–2] 97–101CrossRefGoogle Scholar
  29. [29]
    Walker, H.E., OwensJr., J.W., Etienne, M. et al.: The novel low temperature synthesis of nanocrystalline MgAl2O4 spinel using gel precursors. Mater. Res. Bull. 37 (2002) [6] 1041–1051CrossRefGoogle Scholar
  30. [30]
    Torkian, L., Amini, M.M., Bahrami, Z.: Synthesis and characterization of a nanorefractory dimetaloxide spinel. e-J. Surf. Sci. Nanotech. 8 (2010) 1–3CrossRefGoogle Scholar
  31. [31]
    Dung T.M., Ping, L.R., Azad, A.M.: Magnesium aluminate (MgAl2O4) spinel produced via self-heat-sustained (SHS) technique. Mater. Res. Bull. 36 (2001) 1417–1430CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  1. 1.Department of Metallurgical & Materials EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Mechanical & Automation EngineeringAmity University KolkataKolkataIndia

Personalised recommendations