Advertisement

Multi-objective Optimization for Time-Open Lambert Rendezvous Between Non-coplanar Orbits

  • Guan-qun Wu
  • Li-Guo TanEmail author
  • Xin Li
  • Shen-Min Song
Original Paper
  • 9 Downloads

Abstract

The problem of time-open Lambert multi-objective optimal rendezvous between non-coplanar orbits is studied in the paper. Based on the Lambert’s theorem, the descriptions of time-open Lambert rendezvous subjected to two-impulse and three-impulse are presented, and a universally applicable method for the solution of the transfer orbits is given. To deal with the multi-objective optimization subject to fuel consumption and flight time for rendezvous, an improved NSGA-II algorithm with a better performance is provided. Via the global optimization, Pareto set can be obtained by the improved NSGA-II for the multi-objective optimal rendezvous considering multi-constraints. Numerical simulations are conducted to validate the feasibility of the improved multi-objective optimization algorithm, and the results of the two-impulse and three-impulse multi-objective optimal rendezvous are shown.

Keywords

Lambert rendezvous Non-coplanar orbits Impulse thrust Multi-objective optimization Global optimization 

Notes

Acknowledgements

The authors would like to acknowledge the support provided by the National Natural Science Foundation of China (61703126), the State Key Program of National Natural Science Foundation of China (61333003), and the Major Program of Natural Science Foundation of China (61690210).

References

  1. 1.
    Luo Y, Zhang J, Tang G (2014) Survey of orbital dynamics and control of space rendezvous. Chin J Aeronaut 27(1):1–11CrossRefGoogle Scholar
  2. 2.
    Shirazi A, Ceberio J, Lozano JA (2018) Spacecraft trajectory optimization: a review of models, objectives, approaches and solutions. Progress Aerosp Sci 102:76–98CrossRefGoogle Scholar
  3. 3.
    Zhang G, Ye D (2017) Optimal short-range rendezvous using on-off constant thrust. Aerosp Sci Technol 69:209–217CrossRefGoogle Scholar
  4. 4.
    Yang X, Yu J, Gao H (2012) An impulse control approach to spacecraft autonomous rendezvous based on genetic algorithms. Neurocomputing 77(1):189–196CrossRefGoogle Scholar
  5. 5.
    Prussing JE (2000) A class of optimal two-impulse rendezvous using multiple-revolution Lambert solutions. J Astronaut Sci 48(2):131–148MathSciNetGoogle Scholar
  6. 6.
    Shen H, Tsiotras P (2003) Optimal two-impulse rendezvous using multiple-revolution Lambert solutions. J Guidance Control Dyn 26(1):50–61CrossRefGoogle Scholar
  7. 7.
    Zhang G, Zhou D, Mortari D (2011) Optimal two-impulse rendezvous using constrained multiple-revolution Lambert solutions. Celest Mech Dyn Astron 110(4):305MathSciNetCrossRefGoogle Scholar
  8. 8.
    Xie C, Zhang G, Zhang Y et al (2014) Optimal two-impulse rendezvous with terminal tangent burn considering the trajectory constraints. Adv Space Res 54(4):734–743CrossRefGoogle Scholar
  9. 9.
    Bang J, Ahn J (2018) Two-phase framework for near-optimal multi-target Lambert rendezvous. Adv Space Res 61(5):1273–1285CrossRefGoogle Scholar
  10. 10.
    Luo YZ, Tang GJ, Li YJ et al (2007) Optimization of multiple-impulse, multiple-revolution, rendezvous-phasing maneuvers. J Guidance Control Dyn 30(4):946–952CrossRefGoogle Scholar
  11. 11.
    Zhang D, Song S, Duan G (2008) Fuel and time optimal transfer of spacecrafts rendezvous using Lambert’s theorem and improved genetic algorithm. In: Systems and control in aerospace and astronautics, 2008. ISSCAA 2008. 2nd international symposium on. IEEE, 2008, pp 1–6Google Scholar
  12. 12.
    Pontani M, Conway BA (2012) Particle swarm optimization applied to impulsive orbital transfers. Acta Astronaut 74:141–155CrossRefGoogle Scholar
  13. 13.
    Pontani M, Ghosh P, Conway BA (2012) Particle swarm optimization of multiple-burn rendezvous trajectories. J Guidance Control Dyn 35(4):1192–1207CrossRefGoogle Scholar
  14. 14.
    Zhang JR, Zhao SG, Zhang Y et al (2015) Optimal planning approaches with multiple impulses for rendezvous based on hybrid genetic algorithm and control method. Adv Mech Eng 7(3):1687814015573783Google Scholar
  15. 15.
    Zhou Y, Yan Y, Huang X et al (2017) Multi-objective planning of a multiple geostationary spacecraft refuelling mission. Eng Optim 49(3):531–548CrossRefGoogle Scholar
  16. 16.
    Van Kampen EJ, Chu P, Mulder B (2010) Optimization of spacecraft rendezvous and docking using interval analysis. In: AIAA guidance, navigation, and control conference, pp 7596Google Scholar
  17. 17.
    Chen T, Van Kampen E, Yu H et al (2012) Optimization of time-open constrained Lambert rendezvous using interval analysis. J Guidance Control Dyn 36(1):175–184CrossRefGoogle Scholar
  18. 18.
    Ma H, Xu S (2015) Global optimization of fuel consumption in rendezvous scenarios by the method of interval analysis. Adv Space Res 55(6):1687–1704CrossRefGoogle Scholar
  19. 19.
    Ma H, Xu S, Liang Y (2017) Global optimization of fuel consumption in J2 rendezvous using interval analysis. Adv Space Res 59(6):1577–1598CrossRefGoogle Scholar
  20. 20.
    Luo YZ, Tang GJ, Lei YJ (2007) Optimal multi-objective linearized impulsive rendezvous. J Guidance Control Dyn 30(2):383–389CrossRefGoogle Scholar
  21. 21.
    Liu CM, Juang JC (2016) Orbit transfer from Earth to Mars using modified Lambert algorithm. In: Automatic control conference (CACS), 2016 international, IEEE, pp 155–160Google Scholar
  22. 22.
    Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  23. 23.
    Lin T, Zhang H, Zhang K et al (2017) An adaptive multi-objective estimation of distribution algorithm with a novel Gaussian sampling strategy. Soft Comput 21(20):6043–6061CrossRefGoogle Scholar
  24. 24.
    Zitzler E, Thiele L, Laumanns M et al (2003) Performance assessment of multi-objective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132CrossRefGoogle Scholar
  25. 25.
    Zitzler E, Thiele L (1999) Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271CrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  • Guan-qun Wu
    • 1
    • 2
  • Li-Guo Tan
    • 2
    Email author
  • Xin Li
    • 2
  • Shen-Min Song
    • 2
  1. 1.Beijing Institute of Spacecraft System EngineeringBeijingChina
  2. 2.Harbin Institute of TechnologyHarbinChina

Personalised recommendations