Advertisement

Three-Dimensional Shock-Wave/Boundary-Layer Interaction in Supersonic Flow Past a Finite-Span Sharp Wedge

  • Weipeng LiEmail author
Original Paper
  • 9 Downloads

Abstract

Shock-wave/boundary-layer interactions (SWBLI) are of great importance in supersonic transport vehicles. The shock-induced separation and its unsteadiness may lead to harmful influences on the aerodynamic performance and fatigue life of supersonic air-intakes, turbo-machine cascades and supersonic nozzles. We particularly focus on a three-dimensional SWBLI in supersonic flow past a finite-span sharp wedge. Implicit large-eddy simulation is performed to investigate the flow features in the three-dimensional SWBLI. Results show that a bow-type side-edge shock wave is generated from the leading edge of the finite-span sharp wedge. The shock impinges on the turbulent boundary layer and causes additional turbulence fluctuations in the spanwise direction. Three-dimensional features dominate the shock impingement and reflection. A large-scale separation bubble is induced by the bow-type side-edge shock wave. Properties of this separation bubble are examined and qualitatively compared with a two-dimensional SWBLI case.

Keywords

Three-dimensional shock-wave/boundary-layer interaction Finite-span sharp wedge Bow-type side-edge shock wave 

Notes

Acknowledgements

The authors acknowledge the support of National Natural Science Foundation of China (11202131, 11772194), and the supply of the super computer π in SJTU. Funding was provided by National Basic Research Program of China (973 program) (2014CB744804).

References

  1. 1.
    Dolling DS (2001) Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J 39(8):1517–1531CrossRefGoogle Scholar
  2. 2.
    Adamson TC, Messiter AF Jr (1980) Analysis of two-dimensional interactions between shock waves and boundary layers. Annu Rev Fluid Mech 12:103–138MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Clemens NT, Narayanaswamy V (2009) Shock/turbulent boundary layer interactions: review of recent work on sources of unsteadiness. In: AIAA paper 2009-3710Google Scholar
  4. 4.
    Andreopoulos Y, Agui JH, Briassulis G (2000) Shock wave-turbulence interactions. Annu Rev Fluid Mech 32:309–345MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Clemens NT, Narayanaswamy V (2013) Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu Rev Fluid Mech 46(1):469–492MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Pirozzoli S, Bernardini M (2011) Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J 49(6):1307–1312CrossRefGoogle Scholar
  7. 7.
    Ganapathisubramani B, Clemens NT, Dolling DS (2009) Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J Fluid Mech 636:397–425zbMATHCrossRefGoogle Scholar
  8. 8.
    Piponniau S, Dussauge JP, Debiève JF, Dupont P (2009) A simple model for low-frequency unsteadiness in shock-induced separation. J Fluid Mech 629(6):87–108zbMATHCrossRefGoogle Scholar
  9. 9.
    Touber E, Sandham ND (2011) Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J Fluid Mech 671(3):417–465zbMATHCrossRefGoogle Scholar
  10. 10.
    Morgan B, Duraisamy K, Nguyen N, Kawai S, Lele SK (2013) Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. J Fluid Mech 729:231–284MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lu FK, Li Q, Liu C (2012) Micro vortex generators in high-speed flow. J Progr Aerosp Sci 53:30–45CrossRefGoogle Scholar
  12. 12.
    Souverein LJ, Debiève JF (2010) Effect of air jet vortex generators on a shock wave boundary layer interaction. Exp Fluids 49(5):1053–1064CrossRefGoogle Scholar
  13. 13.
    Narayanaswamy V, Laxminarayan LR, Noel TC (2012) Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator. Phys Fluid 24(7):076101CrossRefGoogle Scholar
  14. 14.
    Fang J, Yao Y, Zheltovodov A, Lu L (2017) Investigation of three-dimensional shock wave/turbulent boundary-layer interaction initiated by a single fin. AIAA J 55(2):509–523CrossRefGoogle Scholar
  15. 15.
    Nonomura T, Fujii K (2009) Effects of difference scheme type in high-order weighted compact nonlinear schemes. J Comput Phys 228:3533–3539zbMATHCrossRefGoogle Scholar
  16. 16.
    Nonomura T, Iizuka N, Fujii K (2010) Freestream and vortex preservation properties of high-order weno and wcns on curvilinear grids. Comput Fluids 39(2):197–214MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Nonomura T, Li W, Goto Y, Fujii K (2011) Improvements of efficiency in seventh-order weighted compact nonlinear scheme. CFD J 18(2):180–186Google Scholar
  18. 18.
    Nishida H, Nonomura T (2009) ADI-SGS scheme on ideal magnetohydrodynamics. J Comput Phys 228:3182–3188zbMATHCrossRefGoogle Scholar
  19. 19.
    Grinstein FF, Margolin LG, Rider WJ (2007) Implicit large eddy simulation: computing turbulent fluid dynamics. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  20. 20.
    Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid scale eddy viscosity model. Phys Fluids 3(7):1760–1765zbMATHCrossRefGoogle Scholar
  21. 21.
    Li W, Nonomura T, Fujii K (2013) Mechanism of controlling supersonic cavity oscillations using upstream mass injections. Phys Fluids 25:086101–086115CrossRefGoogle Scholar
  22. 22.
    Li W, Nonomura T, Fujii K (2013) On the feedback mechanism in supersonic cavity flows. Phys Fluids 25:056101–056115CrossRefGoogle Scholar
  23. 23.
    Nonomura T, Fujii K (2011) Overexpansion effects on characteristics of mach waves from a supersonic cold jet. AIAA J 49:2282–2294CrossRefGoogle Scholar
  24. 24.
    Urbin G, Knight D (2001) Large-eddy simulation of a supersonic boundary layer using an unstructured grid. AIAA J 39(7):1288–1295zbMATHCrossRefGoogle Scholar
  25. 25.
    Comte P, Daude F, Mary I (2008) Simulation of the reduction of unsteadiness in a passively controlled transonic cavity flow. J Fluids Struct 24(8):1252–1261CrossRefGoogle Scholar
  26. 26.
    White F (1974) Viscous fluid flow, chap. 7. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations