Attitude Control of Momentum-Biased Satellites Equipped with Control Moment Gyroscopes

  • Jaehyun JinEmail author
  • Henzeh Leeghim
Original Paper


This paper deals with the attitude control problem of a satellite using control moment gyroscopes (CMGs). CMGs usually suffer from singularity problems. A method is proposed using non-zero or biased angular momentum of a satellite to avoid the singularity issue. The key concept of the method is using gyroscopic torque due to the angular momentum as the auxiliary torque. For this purpose, a nonlinear controller is designed using the state-dependent Riccati equation method and it is proven that such a nonlinear controller is possible for certain conditions. Furthermore, the proposed method greatly reduces the number of singularity configurations that are not manageable. Simulation examples show that the proposed method works satisfactorily.


Satellite attitude control Single-gimbal control moment gyroscope Singularity tolerance Momentum bias State-dependent Riccati equation method 



This research was supported by “Space Core Technology Development Program” funded by the Ministry of Science and ICT, Republic of Korea (no. 2017M1A3A3A02016).


  1. 1.
    Kurokawa H (2007) Survey of theory and steering laws of single-gimbal control moment gyros. J Guid Control Dyn 30(5):1331–1340. CrossRefGoogle Scholar
  2. 2.
    Leeghim H, Bang H, Park J (2009) Singularity avoidance of control moment gyros by one-step ahead singularity index. Acta Astronaut 64(9–10):935–945. CrossRefGoogle Scholar
  3. 3.
    Jones L, Zeledon R, Peck M (2012) Generalized framework for linearly constrained control moment gyro steering. J Guid Control Dyn 35(4):1094–1103. CrossRefGoogle Scholar
  4. 4.
    Oh H, Vadali S (1991) Feedback control and steering laws for spacecraft using single gimbal control moment gyros. J Astronaut Sci 39(2):183–203. CrossRefGoogle Scholar
  5. 5.
    Wie B, Bailey D, Heiberg C (2001) Singularity robust steering logic for redundant single-gimbal control moment gyros. J Guid Control Dyn 24(5):865–872. CrossRefGoogle Scholar
  6. 6.
    Wie B (2005) Singularity escape/avoidance steering logic for control moment gyro systems. J Guid Control Dyn 28(5):948–956. CrossRefGoogle Scholar
  7. 7.
    Ford K, Hall C (2000) Singular direction avoidance steering for control moment gyros. J Guid Control Dyn 23(4):648–656. CrossRefGoogle Scholar
  8. 8.
    Margulies G, Aubrun J (1978) Geometric theory of single-gimbal control moment gyro systems. J Astronaut Sci 26(2):159–191. CrossRefGoogle Scholar
  9. 9.
    Schaub H, Junkins J (2000) Singularity avoidance using null motion and variable-speed control moment gyros. J Guid Control Dyn 23(1):11–16. CrossRefGoogle Scholar
  10. 10.
    Jin J (2017) Volumetric singularity index for a steering law of control moment gyros. J Inst Control Robot Syst (in Korean) 23(1):8–14. CrossRefGoogle Scholar
  11. 11.
    Kwon S, Shimomura T, Okubo H (2011) Pointing control of spacecraft using two SGCMGs via LPV control theory. Acta Astronaut 68(7–8):1168–1175. CrossRefGoogle Scholar
  12. 12.
    Kasai S, Kojima H, Satoh M (2013) Spacecraft attitude maneuver using two single-gimbal control moment gyros. Acta Astronaut 84:88–98. CrossRefGoogle Scholar
  13. 13.
    Petersen C, Leve F, Kolmanovsky I (2016) Underactuated spacecraft switching law for two reaction wheels and constant angular momentum. J Guid Control Dyn 39(9):2086–2099. CrossRefGoogle Scholar
  14. 14.
    Jin J (2018) Attitude control of underactuated and momentum-biased satellite by using State-Dependent Riccati Equation method. Int J Aeronaut Sp Sci 20:204–213CrossRefGoogle Scholar
  15. 15.
    Cloutier J (1997) State-dependent Riccati equation techniques: an overview. In: Proceedings of the 1997 American control conference, vol 2, AIAA, Albuquerque, NM, 1997, pp 932–936.
  16. 16.
    Çimen T (2012) Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. J Guid Control Dyn 35(4):1025–1047. CrossRefGoogle Scholar
  17. 17.
    Ozawa R, Takahashi M (2018) Agile attitude maneuver via SDRE controller using SGCMG integrated satellite model. In: AIAA guidance, navigation, and control conference, AIAA, Kissimmee, Florida, 2018.
  18. 18.
    Sidi M (1997) Spacecraft dynamics and control: a practical engineering approach. Cambridge University Press, Cambridge, pp 164–165CrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  1. 1.Department of Aerospace Engineering, Center for Aerospace Engineering ResearchSunchon National UniversitySuncheonKorea
  2. 2.Department of Aerospace EngineeringChosun UniversityGwangjuKorea

Personalised recommendations