Advertisement

Attitude Control of Momentum-Biased Satellites Equipped with Control Moment Gyroscopes

  • Jaehyun JinEmail author
  • Henzeh Leeghim
Original Paper
  • 41 Downloads

Abstract

This paper deals with the attitude control problem of a satellite using control moment gyroscopes (CMGs). CMGs usually suffer from singularity problems. A method is proposed using non-zero or biased angular momentum of a satellite to avoid the singularity issue. The key concept of the method is using gyroscopic torque due to the angular momentum as the auxiliary torque. For this purpose, a nonlinear controller is designed using the state-dependent Riccati equation method and it is proven that such a nonlinear controller is possible for certain conditions. Furthermore, the proposed method greatly reduces the number of singularity configurations that are not manageable. Simulation examples show that the proposed method works satisfactorily.

Keywords

Satellite attitude control Single-gimbal control moment gyroscope Singularity tolerance Momentum bias State-dependent Riccati equation method 

Notes

Acknowledgements

This research was supported by “Space Core Technology Development Program” funded by the Ministry of Science and ICT, Republic of Korea (no. 2017M1A3A3A02016).

References

  1. 1.
    Kurokawa H (2007) Survey of theory and steering laws of single-gimbal control moment gyros. J Guid Control Dyn 30(5):1331–1340.  https://doi.org/10.2514/1.27316 CrossRefGoogle Scholar
  2. 2.
    Leeghim H, Bang H, Park J (2009) Singularity avoidance of control moment gyros by one-step ahead singularity index. Acta Astronaut 64(9–10):935–945.  https://doi.org/10.1016/j.actaastro.2008.11.004 CrossRefGoogle Scholar
  3. 3.
    Jones L, Zeledon R, Peck M (2012) Generalized framework for linearly constrained control moment gyro steering. J Guid Control Dyn 35(4):1094–1103.  https://doi.org/10.2514/1.56207 CrossRefGoogle Scholar
  4. 4.
    Oh H, Vadali S (1991) Feedback control and steering laws for spacecraft using single gimbal control moment gyros. J Astronaut Sci 39(2):183–203.  https://doi.org/10.2514/6.1989-3475 CrossRefGoogle Scholar
  5. 5.
    Wie B, Bailey D, Heiberg C (2001) Singularity robust steering logic for redundant single-gimbal control moment gyros. J Guid Control Dyn 24(5):865–872.  https://doi.org/10.2514/2.4799 CrossRefGoogle Scholar
  6. 6.
    Wie B (2005) Singularity escape/avoidance steering logic for control moment gyro systems. J Guid Control Dyn 28(5):948–956.  https://doi.org/10.2514/1.10136 CrossRefGoogle Scholar
  7. 7.
    Ford K, Hall C (2000) Singular direction avoidance steering for control moment gyros. J Guid Control Dyn 23(4):648–656.  https://doi.org/10.2514/6.1998-4470 CrossRefGoogle Scholar
  8. 8.
    Margulies G, Aubrun J (1978) Geometric theory of single-gimbal control moment gyro systems. J Astronaut Sci 26(2):159–191.  https://doi.org/10.2514/6.1989-3475 CrossRefGoogle Scholar
  9. 9.
    Schaub H, Junkins J (2000) Singularity avoidance using null motion and variable-speed control moment gyros. J Guid Control Dyn 23(1):11–16.  https://doi.org/10.2514/2.4514 CrossRefGoogle Scholar
  10. 10.
    Jin J (2017) Volumetric singularity index for a steering law of control moment gyros. J Inst Control Robot Syst (in Korean) 23(1):8–14.  https://doi.org/10.5302/J.ICROS.2017.16.0187.10 CrossRefGoogle Scholar
  11. 11.
    Kwon S, Shimomura T, Okubo H (2011) Pointing control of spacecraft using two SGCMGs via LPV control theory. Acta Astronaut 68(7–8):1168–1175.  https://doi.org/10.1016/j.actaastro.2010.10.001 CrossRefGoogle Scholar
  12. 12.
    Kasai S, Kojima H, Satoh M (2013) Spacecraft attitude maneuver using two single-gimbal control moment gyros. Acta Astronaut 84:88–98.  https://doi.org/10.1016/j.actaastro.2012.07.035 CrossRefGoogle Scholar
  13. 13.
    Petersen C, Leve F, Kolmanovsky I (2016) Underactuated spacecraft switching law for two reaction wheels and constant angular momentum. J Guid Control Dyn 39(9):2086–2099.  https://doi.org/10.2514/1.G001680 CrossRefGoogle Scholar
  14. 14.
    Jin J (2018) Attitude control of underactuated and momentum-biased satellite by using State-Dependent Riccati Equation method. Int J Aeronaut Sp Sci 20:204–213CrossRefGoogle Scholar
  15. 15.
    Cloutier J (1997) State-dependent Riccati equation techniques: an overview. In: Proceedings of the 1997 American control conference, vol 2, AIAA, Albuquerque, NM, 1997, pp 932–936.  https://doi.org/10.1109/acc.1997.609663
  16. 16.
    Çimen T (2012) Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. J Guid Control Dyn 35(4):1025–1047.  https://doi.org/10.2514/1.55821 CrossRefGoogle Scholar
  17. 17.
    Ozawa R, Takahashi M (2018) Agile attitude maneuver via SDRE controller using SGCMG integrated satellite model. In: AIAA guidance, navigation, and control conference, AIAA, Kissimmee, Florida, 2018.  https://doi.org/10.2514/6.2018-1579
  18. 18.
    Sidi M (1997) Spacecraft dynamics and control: a practical engineering approach. Cambridge University Press, Cambridge, pp 164–165CrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  1. 1.Department of Aerospace Engineering, Center for Aerospace Engineering ResearchSunchon National UniversitySuncheonKorea
  2. 2.Department of Aerospace EngineeringChosun UniversityGwangjuKorea

Personalised recommendations