Free Vibration Analysis of Graphene Platelets–Reinforced Composites Plates in Thermal Environment Based on Higher-Order Shear Deformation Plate Theory

  • Saeedeh Qaderi
  • Farzad EbrahimiEmail author
  • Vinyas Mahesh
Original Paper


As a first endeavor, this article presents the free vibration of composite plates reinforced with graphene platelets (GPLs) based on the higher-order shear deformation plate theory. Moreover, it is assumed that the material properties are temperature dependent and are graded in the thickness direction. It is assumed that GPLs randomly spread out in each individual composite layer reinforced with graphene platelets. The theoretical formulation is derived based on higher-order shear deformation plate theory and the initial thermal stresses are evaluated by solving the thermo-elastic equilibrium equations. The Halpin–Tsai micromechanical model is used to evaluate the effective material properties of every layer of composite plates reinforced GPLs. Further, the Navier solution has been used to derive the governing equations of motion and evaluate the natural frequencies and dynamic response of simply supported graphene platelet reinforced composite plates. Four different GPL distribution pattern is modeled to find out its effect on the frequency of the plate and the other parameters. The result asserted that subjoining GPL to composite plates has a significant reinforcing effect on the free vibration of Graphene platelet reinforced composite (GPLRC) plates.


Vibration analysis GPLRC plates Graphene platelet Higher-order shear deformation plate theory Thermal environment 



  1. 1.
    Bellucci S, Balasubramanian C, Micciulla F, Rinaldi G (2007) CNT composites for aerospace applications. J Exp Nanosci 2(3):193–206CrossRefGoogle Scholar
  2. 2.
    Adam H (1997) Carbon fibre in automotive applications. Mater Des 18(4–6):349–355CrossRefGoogle Scholar
  3. 3.
    Gauvin F, Robert M (2015) Durability study of vinylester/silicate nanocomposites for civil engineering applications. Polym Degrad Stab 121:359–368CrossRefGoogle Scholar
  4. 4.
    Baradaran S, Moghaddam E, Basirun WJ, Mehrali M, Sookhakian M, Hamdi M, Nakhaei Moghaddam MR, Alias Y (2014) Mechanical properties and biomedical applications of a nanotube hydroxyapatite reduced graphene oxide composite. Carbon 69:32–45CrossRefGoogle Scholar
  5. 5.
    Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686CrossRefGoogle Scholar
  6. 6.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRefGoogle Scholar
  7. 7.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRefGoogle Scholar
  8. 8.
    Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495CrossRefGoogle Scholar
  9. 9.
    Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884.26–3890.26CrossRefGoogle Scholar
  10. 10.
    Rafiee MA, Rafiee J, Yu Z-Z, Koratkar N (2009) Buckling resistant graphene nanocomposites. Appl Phys Lett 95(22):223103CrossRefGoogle Scholar
  11. 11.
    Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu Z-Z, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6(2):179–183CrossRefGoogle Scholar
  12. 12.
    Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25CrossRefGoogle Scholar
  13. 13.
    Montazeri A, Rafii-Tabar H (2011) Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites. Phys Lett A 375(45):4034–4040CrossRefGoogle Scholar
  14. 14.
    Mortazavi B, Benzerara O, Meyer H, Bardon J, Ahzi S (2013) Combined molecular dynamics-finite-element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon 60:356–365CrossRefGoogle Scholar
  15. 15.
    Wang Y, Yu J, Dai W, Song Y, Wang D, Zeng L, Jiang N (2015) Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. Polym Compos 36(3):556–565CrossRefGoogle Scholar
  16. 16.
    Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890CrossRefGoogle Scholar
  17. 17.
    King JA, Klimek DR, Miskioglu I, Odegard GM (2013) Mechanical properties of graphene nanoplatelet/epoxy composites. J Appl Polym Sci 128(6):4217–4223CrossRefGoogle Scholar
  18. 18.
    Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of grapheme nanocomposites: a review. Compos Sci Technol 72(12):1459–1476CrossRefGoogle Scholar
  19. 19.
    Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530CrossRefGoogle Scholar
  20. 20.
    Liu J, Yan H, Jiang K (2013) Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram Int 39(6):6215–6221CrossRefGoogle Scholar
  21. 21.
    Spanos KN, Georgantzinos SK, Anifantis NK (2015) Mechanical properties of graphene nanocomposites: a multiscale finite element prediction. Compos Struct 132:536–544CrossRefGoogle Scholar
  22. 22.
    Ji X-Y, Cao Y-P, Feng X-Q (2010) Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Model Simul Mater Sci 18(4):045005CrossRefGoogle Scholar
  23. 23.
    Shen H-S (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 91(1):9–19CrossRefGoogle Scholar
  24. 24.
    Wu HL, Yang J, Kitipornchai S (2016) Nonlinear vibration of functionally graded carbon nanotube reinforced composite beams with geometric imperfections. Compos B Eng 90:86–96CrossRefGoogle Scholar
  25. 25.
    Rafiee M, Yang J, Kitipornchai S (2013) Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams. Comput Math Appl 66(7):1147–1160CrossRefGoogle Scholar
  26. 26.
    Rafiee M, Yang J, Kitipornchai S (2013) Large amplitude vibrations of carbon nanotube reinforced composite beams with piezoelectric layers. Compos Struct 96:716–725CrossRefGoogle Scholar
  27. 27.
    Ke LL, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube reinforced composite beams. Compos Struct 92(3):676–683CrossRefGoogle Scholar
  28. 28.
    Ke LL, Yang J, Kitipornchai S (2013) Dynamic stability of functionally graded carbon nanotube reinforced composite beams. Mech Adv Mater Struct 20(1):28–37CrossRefGoogle Scholar
  29. 29.
    Wu H, Kitipornchai S, Yang J (2015) Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. Int J Struct Stab Dyn 15(07):1540011MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ansari R, Shojaei MF, Mohammadi V, Gholami R, Sadeghi F (2014) Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos Struct 113:316–327CrossRefGoogle Scholar
  31. 31.
    Chandra Y, Chowdhury R, Scarpa F, Adhikari S, Sienz J, Arnold C, Murmu T, Bould D (2012) Vibration frequency of graphene based composites: a multiscale approach. Mater Sci Eng B 177(3):303–310CrossRefGoogle Scholar
  32. 32.
    Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588CrossRefGoogle Scholar
  33. 33.
    Wu H, Kitipornchai S, Yang J (2017) Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater Des 132:430–441CrossRefGoogle Scholar
  34. 34.
    Zhang LW, Zhu P, Liew KM (2014) Thermal buckling of functionally graded plates using a local Kriging meshless method. Compos Struct 108:472–492CrossRefGoogle Scholar
  35. 35.
    Zhao X, Lee YY, Liew KM (2009) Mechanical and thermal buckling analysis of functionally graded plates. Compos Struct 90(2):161–171CrossRefGoogle Scholar
  36. 36.
    Mohammadimehr M, Salemi M, Navi BR (2016) Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermo-mechanical loadings using DQM. Compos Struct 138:361–380CrossRefGoogle Scholar
  37. 37.
    Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51(4):745–752CrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  • Saeedeh Qaderi
    • 1
  • Farzad Ebrahimi
    • 1
    Email author
  • Vinyas Mahesh
    • 2
  1. 1.Faculty of Engineering, Department of MechanicsImam Khomeini International UniversityQazvinIran
  2. 2.Department of Mechanical EngineeringNitte Meenakshi Institute of TechnologyBangaloreIndia

Personalised recommendations