Advertisement

The Effects of Wing Mass Asymmetry on Low-Speed Flight Characteristics of an Insect Model

  • Anh Tuan Nguyen
  • Jae-Hung HanEmail author
  • Thanh Trung Vu
Original Paper
  • 73 Downloads

Abstract

Wing asymmetries can be found in real insects and flapping-wing micro air vehicles. This paper investigates some characteristics, including the trim conditions, power requirements and passive open-loop dynamics of an insect model with the asymmetry in wing mass in low-speed flight. The motion of the insect model is obtained through a simulation framework that couples an unsteady vortex-lattice method and a multibody dynamics code. The results show that a heavier wing has to be moved with a larger stroke amplitude to compensate for the wing mass asymmetry. The power required by the heavier wing is also found greater. Moreover, we can observe the asymmetries in lateral dynamics while comparing dynamic responses due to rightward and leftward gust disturbances.

Keywords

Insect flight Insect unsteady aerodynamics Unsteady vortex-lattice method 

List of Symbols

\( a_{1} \)

Squire’s parameter

B

Control effectiveness matrix

\( \bar{c} \)

Mean wing chord

D

Drag

F

Force

f

Flapping frequency

G

Set of applied forces and gyroscopic terms of the inertia force

I

Moment of inertia

L

Lift

\( l_{1} \)

Distance from the body center to the wing-base pivot

M

Moment

m

Mass

n

Normal vector

P

Matrix used to project the applied forces

P

Power

p

Pressure

Q

Mass matrix

q

Set of coordinates representing displacements

R

Wing length

\( r_{2} \)

Second moment of the wing area

\( r_{\text{c}} \)

Vortex core radius

t

Time

V

Velocity vector of flow

v

Velocity of the insect

x, y, z

Coordinates

α

Rotation angle

\( \alpha_{\text{L}} \)

Lamb constant

β

Stroke plane angle

Γ

Circulation

γ

Surface vorticity

η

Set of applied motion constraints

\( \eta_{\text{s}} \)

Coefficient of leading-edge suction efficiency

θ

Elevation angle

Λ

Sweep angle

ρ

Air density

τ

Torque

υ

Kinematic viscosity

ϕ

Sweep angle

χ

Body angle

Subscripts

0

Mean value

amp

Amplitude

b

Body-fixed

bd

Body

G

Ground-fixed

L.E.

Leading-edge

ref

Reference

sp

Stroke plane

wg

Wing

Superscripts

a

Aerodynamics

as

Asymmetric

i

Inertial

l

Left wing

lg

Leftward gust

s

Symmetric

r

Right wing

rg

Rightward gust

Notes

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 107.01-2018.05.

Supplementary material

42405_2019_165_MOESM1_ESM.mp4 (1.5 mb)
Supplementary material 1 (MP4 1562 kb)

References

  1. 1.
    Phan HV, Kang T, Park HC (2017) Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control. Bioinspir Biomim 12:036006.  https://doi.org/10.1088/1748-3190/aa65db CrossRefGoogle Scholar
  2. 2.
    Keennon M, Klingebiel K (2012) Development of the nano hummingbird: a tailless flapping wing micro air vehicle. AIAA aerospace sciences meeting, Reston, Virginia, US.  https://doi.org/10.2514/6.2012-588
  3. 3.
    Ma KY, Chirarattananon P, Fuller SB, Wood RJ (2013) Controlled flight of a biologically inspired, insect-scale robot. Science 340:603–607.  https://doi.org/10.1126/science.1231806 CrossRefGoogle Scholar
  4. 4.
    Karásek M, Hua A, Nan Y, Lalami M, Preumont A (2014) Pitch and roll control mechanism for a hovering flapping wing MAV. Int J Micro Air Veh 6:253–264.  https://doi.org/10.1260/1756-8293.6.4.253 CrossRefGoogle Scholar
  5. 5.
    Chan WL, Nguyen QV, Debiasi M (2016) Tailless control of a double clap-and-fling flapping wing MAV. In: International micro air vehicle competition and conference, Beijing, ChinaGoogle Scholar
  6. 6.
    Muijres FT, Elzinga MJ, Melis JM, Dickinson MH (2014) Flies evade looming targets by executing rapid visually directed banked turns. Science 344:172–177.  https://doi.org/10.1126/science.1248955 CrossRefGoogle Scholar
  7. 7.
    Meng XG, Sun M (2016) Wing and body kinematics of forward flight in drone-flies. Bioinspir Biomim 11:056002.  https://doi.org/10.1088/1748-3190/11/5/056002 CrossRefGoogle Scholar
  8. 8.
    O’Hara RP, Palazotto AN (2012) The morphological characterization of the forewing of the Manduca sexta species for the application of biomimetic flapping wing micro air vehicles. Bioinspir Biomim 7:046011.  https://doi.org/10.1088/1748-3182/7/4/046011 CrossRefGoogle Scholar
  9. 9.
    Fernandez MJ, Springthorpe D, Hedrick TL (2012) Neuromuscular and biomechanical compensation for wing asymmetry in insect hovering flight. J Exp Biol 215:3631–3638.  https://doi.org/10.1242/jeb.073627 CrossRefGoogle Scholar
  10. 10.
    Muijres FT, Iwasaki NA, Elzinga MJ, Melis JM, Dickinson MH (2017) Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics. Interface Focus 7:20160103.  https://doi.org/10.1098/rsfs.2016.0103 CrossRefGoogle Scholar
  11. 11.
    Kassner Z, Dafni E, Ribak G (2016) Kinematic compensation for wing loss in flying damselflies. J Insect Physiol 85:1–9.  https://doi.org/10.1016/j.jinsphys.2015.11.009 CrossRefGoogle Scholar
  12. 12.
    Nguyen AT, Kim J-K, Han J-S, Han J-H (2016) Extended unsteady vortex-lattice method for insect flapping wings. J Aircr 53:1709–1718.  https://doi.org/10.2514/1.C033456 CrossRefGoogle Scholar
  13. 13.
    Nguyen AT, Han J-S, Han J-H (2017) Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta. Bioinspir Biomim 12:016007.  https://doi.org/10.1088/1748-3190/12/1/016007 CrossRefGoogle Scholar
  14. 14.
    Kim JK, Han JS, Lee JS, Han JH (2015) Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization. Bioinspir Biomim 10:056012.  https://doi.org/10.1088/1748-3190/10/5/056012 CrossRefGoogle Scholar
  15. 15.
    Ellington CP (1984) The aerodynamics of hovering insect flight. II. Morphological parameters. Philos Trans R Soc Lond B Biol Sci 305:17–40.  https://doi.org/10.1098/rstb.1984.0050 CrossRefGoogle Scholar
  16. 16.
    Willmott AP (1995) The mechanics of hawkmoth flight. Dissertation, University of CambridgeGoogle Scholar
  17. 17.
    Senda K, Obara T, Kitamura M, Yokoyama N, Hirai N, Iima M (2012) Effects of structural flexibility of wings in flapping flight of butterfly. Bioinspir Biomim 7:025002.  https://doi.org/10.1088/1748-3182/7/2/025002 CrossRefGoogle Scholar
  18. 18.
    Senda K, Obara T, Kitamura M, Nishikata T, Hirai N, Iima M, Yokoyama N (2012) Modeling and emergence of flapping flight of butterfly based on experimental measurements. Robot Auton Syst 60:670–678.  https://doi.org/10.1016/j.robot.2011.12.007 CrossRefGoogle Scholar
  19. 19.
    Roccia BA, Preidikman S, Massa JC, Mook DT (2013) Modified unsteady vortex-lattice method to study flapping wings in hover flight. AIAA J 51:2628–2642.  https://doi.org/10.2514/1.J052262 CrossRefGoogle Scholar
  20. 20.
    Nguyen AT, Han J-H, Nguyen AT (2017) Application of artificial neural networks to predict dynamic responses of wing structures due to atmospheric turbulence. Int J Aeronaut Space Sci 18:474–484.  https://doi.org/10.5139/IJASS.2017.18.3.474 CrossRefGoogle Scholar
  21. 21.
    Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630.  https://doi.org/10.1038/384626a0 CrossRefGoogle Scholar
  22. 22.
    Polhamus EC (1971) Predictions of vortex-lift characteristics by a leading-edge suction analogy. J Aircr 8:193–199.  https://doi.org/10.2514/3.44254 CrossRefGoogle Scholar
  23. 23.
    Gandhi F, Tauszig L (2000) A critical evaluation of various approaches for the numerical detection of helicopter blade-vortex interactions. J Am Helicopter Soc 45:179–190.  https://doi.org/10.4050/JAHS.45.179 CrossRefGoogle Scholar
  24. 24.
    Zhang YL, Sun M (2010) Dynamic flight stability of hovering model insects: theory versus simulation using equations of motion coupled with Navier–Stokes equations. Acta Mech Sin 26:509–520.  https://doi.org/10.1007/s10409-010-0360-5 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gear C (1971) Simultaneous numerical solution of differential-algebraic equations. IEEE Trans Circuit Theory 18:89–95.  https://doi.org/10.1109/TCT.1971.1083221 CrossRefGoogle Scholar
  26. 26.
    Kim J-K, Han J-H (2014) A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta. Bioinspir Biomim 9:016011.  https://doi.org/10.1088/1748-3182/9/1/016011 CrossRefGoogle Scholar
  27. 27.
    Pfeiffer AT, Lee J-S, Han J-H, Baier H (2010) Ornithopter flight simulation based on flexible multi-body dynamics. J Bionic Eng 7:102–111.  https://doi.org/10.1016/S1672-6529(09)60189-X CrossRefGoogle Scholar
  28. 28.
    Lee JS, Kim JK, Han JH, Ellington CP (2012) Periodic tail motion linked to wing motion affects the longitudinal stability of ornithopter flight. J Bionic Eng 9:18–28.  https://doi.org/10.1016/S1672-6529(11)60093-0 CrossRefGoogle Scholar
  29. 29.
    Kim JK, Han JH (2013) Control effectiveness analysis of the hawkmoth Manduca sexta: a multibody dynamics approach. Int J Aeronaut Space Sci 14:152–161.  https://doi.org/10.5139/ijass.2013.14.2.152 CrossRefGoogle Scholar
  30. 30.
    Casey TM (1981) A comparison of mechanical and energetic estimates of flight cost for hovering sphinx moths. J Exp Biol 91:117–129Google Scholar
  31. 31.
    Willmott AP, Ellington CP (1997) The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation. J Exp Biol 200:2723–2745Google Scholar
  32. 32.
    Taylor GK, Thomas ALR (2003) Dynamic flight stability in the desert locust Schistocerca gregaria. J Exp Biol 206:2803–2829.  https://doi.org/10.1242/jeb.00501 CrossRefGoogle Scholar
  33. 33.
    Xu N, Sun M (2014) Lateral flight stability of two hovering model insects. J Bionic Eng 11:439–448.  https://doi.org/10.1016/S1672-6529(14)60056-1 CrossRefGoogle Scholar
  34. 34.
    Willmott AP, Ellington CP (1997) The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. J Exp Biol 200:2705–2722Google Scholar
  35. 35.
    Sun M (2014) Insect flight dynamics: stability and control. Rev Mod Phys 86:615–646.  https://doi.org/10.1103/RevModPhys.86.615 CrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringLe Quy Don Technical UniversityHa NoiVietnam
  2. 2.Department of Aerospace EngineeringKAISTDaejeonRepublic of Korea
  3. 3.Office of International CooperationLe Quy Don Technical UniversityHa NoiVietnam

Personalised recommendations