Advertisement

A Traveling Salesman Problem-Based Approach to Observation Scheduling for Satellite Constellation

  • Doo-Hyun Cho
  • Han-Lim ChoiEmail author
Original Paper
  • 6 Downloads

Abstract

This paper addresses observation task scheduling of a heterogeneous satellite constellation in low-Earth-orbits. The goal of scheduling is to find a sequence and times for observing the ground objects to maximize the sum of values of the observed ground objects while satisfying all the constraints associated with complex mission specifications. The method develops an instance of the asymmetric traveling salesman problem (ATSP) for this scheduling, and solves the resulting ATSP using a well-established Lin–Kernighan–Helsgaun algorithm. Numerical experiments demonstrate the characteristics, efficiency, and scalability of the proposed scheduling approach, in particular, compared to the first-in first-out strategy-based greedy algorithm.

Keywords

LEO satellite constellation Observation scheduling Asymmetric traveling salesman problem (ATSP) Lin–Kernighan–Helsgaun (LKH)Algorithm 

Notes

References

  1. 1.
    Akturk MS, Ozdemir D (2000) An exact approach to minimizing total weighted tardiness with release dates. IIE Trans 32(11):1091–1101CrossRefGoogle Scholar
  2. 2.
    Akturk MS, Ozdemir D (2001) A new dominance rule to minimize total weighted tardiness with unequal release dates. Eur J Oper Res 135(2):394–412MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baek SW, Cho KR, Lee DW, Kim HD (2010) A comparison of scheduling optimization algorithm for the efficient satellite mission scheduling operation. J Kor Soc Aeronaut Sp Sci 38(1):48–57Google Scholar
  4. 4.
    Bianchessi N, Cordeau JF, Desrosiers J, Laporte G, Raymond V (2007) A heuristic for the multi-satellite multi-orbit and multi-user management of earth observation satellites. Eur J Oper Res 177(2):750–762CrossRefzbMATHGoogle Scholar
  5. 5.
    Bianchessi N, Righini G (2006) A mathematical programming algorithm for planning and scheduling an earth observing SAR constellation. In: Proceeding of 5th International workshop on planning and scheduling for spaceGoogle Scholar
  6. 6.
    Callahan JR (1973) The nothing hot delay problems in the production of steel. Ph.D. thesis, University of TorontoGoogle Scholar
  7. 7.
    Cho DH, Choi HL (2018) Optimization-based scheduling method for agile earth-observing satellite constellation. J Aerosp Inf Syst.  https://doi.org/10.2514/1.I010620)
  8. 8.
    Cho DH, Jang DS, Choi HL (2018) Heterogeneous, multiple depot multi-UAV path planning for remote sensing tasks. In: 2018 AIAA Information Systems-AIAA Infotech@ Aerospace, p 0894Google Scholar
  9. 9.
    Cho DH, Kim HY, Choi HL (2016) Optimal continuous-time job scheduling for multiple low earth orbit satellites. In: AIAA guidance, navigation, and control conference, p 2107Google Scholar
  10. 10.
    Cordeau JF, Laporte G (2005) Maximizing the value of an earth observation satellite orbit. J Oper Res Soc 56(8):962–968CrossRefzbMATHGoogle Scholar
  11. 11.
    Davari M, Demeulemeester E, Leus R, Nobibon FT (2016) Exact algorithms for single-machine scheduling with time windows and precedence constraints. J Schedul 19(3):309–334MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Egli U, Rippin D (1986) Short-term scheduling for multiproduct batch chemical plants. Comput Chem Eng 10(4):303–325CrossRefGoogle Scholar
  13. 13.
    Globus A, Crawford J, Lohn J, Pryor A (2003) Scheduling earth observing satellite with evolutionary algorithms. In: Proceedings of international conference on space mission challenges for information technology. Pasadena, California, USAGoogle Scholar
  14. 14.
    Globus A, Crawford J, Lohn J, Pryor A (2004) A comparison of techniques for scheduling earth observing satellites. In: Proceedings of the 19th national conference on artificial intelligence, pp 836–843. San Jose, California, USAGoogle Scholar
  15. 15.
    Hall NG, Laporte G, Selvarajah E, Sriskandarajah C (2003) Scheduling and lot streaming in flowshops with no-wait in process. J Schedul 6(4):339–354MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Han SM, Beak SW, Cho KR, Lee DW, Kim HD (2008) Satellite mission scheduling using genetic algorithm. In: SICE annual conference, 2008, pp 1226–1230. IEEEGoogle Scholar
  17. 17.
    Hartmann S (1998) A competitive genetic algorithm for resource-constrained project scheduling. Naval Research Logistics (NRL) 45(7):733–750MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jang DS, Choi HL, Roh JE (2011) A time-window-based task scheduling approach for multi-function phased array radars. In: International conference on control, automation, and systems, pp 1250–1254. IEEEGoogle Scholar
  19. 19.
    Jouglet A, Baptiste P, Carlier J (2004) Handbook of scheduling: algorithms, models and performance analysis, chap 13 - branch and bound algorithms for total weighted tardiness. CRC, Boca RatonGoogle Scholar
  20. 20.
    Lei L, Wang TJ (1994) Determining optimal cyclic hoist schedules in a single-hoist electroplating line. IIE Trans 26(2):25–33CrossRefGoogle Scholar
  21. 21.
    Lemaıtre M, Verfaillie G, Jouhaud F, Lachiver JM, Bataille N (2002) Selecting and scheduling observations of agile satellites. Aerosp Sci Technol 6(5):367–381CrossRefGoogle Scholar
  22. 22.
    Lin WC, Chang SC (2005) Hybrid algorithms for satellite imaging scheduling. Proc IEEE Int Conf Syst Man Cybernet 3:2518–2523Google Scholar
  23. 23.
    Lin WC, Liao DY (2004) A tabu search algorithm for satellite imaging scheduling. Proc IEEE Int Conf Syst Man Cybernet 2:1601–1606Google Scholar
  24. 24.
    Lin WC, Liao DY, Liu CY, Lee YY (2005) Daily imaging scheduling of an earth observation satellite. IEEE Trans Syst Man Cybernet Part A Syst Hum 35:213–223CrossRefGoogle Scholar
  25. 25.
    Logendran R, Salmasi N, Sriskandarajah C (2006) Two-machine group scheduling problems in discrete parts manufacturing with sequence-dependent setups. Comput Oper Res 33(1):158–180MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Muraoka H, Cohen RH, Aijiro O, Doi N (1998) Aster observation scheduling algorithm. In: Proceedings of the international symposium space mission operations and ground data systems. CiteseerGoogle Scholar
  27. 27.
    Nasr AA, El-Bahnasawy NA, Attiya G, El-Sayed A (2018) Using the TSP solution strategy for cloudlet scheduling in cloud computing. J Netw Syst Manag 2018:1–22Google Scholar
  28. 28.
    Parish DA (1994) A genetic algorithm approach to automating satellite range scheduling. Tech. rep, DTIC DocumentGoogle Scholar
  29. 29.
    Pemberton JC, Galiber F (2001) A constraint-based approach to satellite scheduling. DIMACS Ser Discrete Math Theor Comput Sci 57:101–114MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Qin J, Liu Y, Mao X, McNair J (2013) Deadline based resource balancing task allocation for clustered heterogeneous LEO small satellite network. In: 2013 IEEE military communications conferenceGoogle Scholar
  31. 31.
    Venkateswarlu PS, Santhalakshmi S, Bagchi T, Kumar S (2004) Multi-satellite scheduling using genetic algorithms. In: Space OPS 2004 conference, p 515Google Scholar
  32. 32.
    Walker JG (1984) Satellite constellations. J Br Interplanet Soc 37:559–572Google Scholar
  33. 33.
    Wang J, Demeulemeester E, Qiu D (2016) A pure proactive scheduling algorithm for multiple earth observation satellites under uncertainties of clouds. Comput Oper Res 74:1–13MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wang J, Zhu X, Zhu J, Ma M, Yang LT (2012) Dmtrh: A real-time scheduling algorithm for multiple earth observation satellites. In: 2012 IEEE 14th international conference on high performance computing and communications, pp. 673–680. Liverpool, UKGoogle Scholar
  35. 35.
    Wang JM, Li JF, Tan YJ (2007) Study on heuristic algorithm for dynamic scheduling problem of earth observing satellites. In: Proceedings of the 8th ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing, pp 9–14. Qingdao, ChinaGoogle Scholar
  36. 36.
    Wang P, Reinelt G, Gao P, Tan Y (2011) A model, a heuristic and a decision support system to solve the scheduling problem of an earth observing satellite constellation. Comput Ind Eng 61:322–335CrossRefGoogle Scholar
  37. 37.
    Wang Y (2015) An approximate method to compute a sparse graph for traveling salesman problem. Expert Syst Appl 42(12):5150–5162CrossRefGoogle Scholar
  38. 38.
    Wang Y, Remmel J (2018) A method to compute the sparse graphs for traveling salesman problem based on frequency quadrilaterals. In: International workshop on frontiers in algorithmics, pp 286–299. SpringerGoogle Scholar
  39. 39.
    Wolfe WJ, Sorensen SE (2000) Three scheduling algorithms applied to the earth observing systems domain. Manag Sci 46(1):148–166CrossRefzbMATHGoogle Scholar
  40. 40.
    Wu G, Ma M, Zhu J, Qiu D (2012) Multi-satellite observation integrated scheduling method oriented to emergency tasks and common tasks. J Syst Eng Electron 23(5):723–733CrossRefGoogle Scholar
  41. 41.
    Xhafa F, Sun J, Barolli A, Biberaj A, Barolli L (2012) Genetic algorithms for satellite scheduling problems. Mob Inf Syst 8(4):351–377Google Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringKAISTYuseongRepublic of Korea

Personalised recommendations