Advertisement

Vision-Based Tracking of a Ground-Moving Target with UAV

  • Sanghyuk ParkEmail author
  • Dongwon Jung
Original Paper
  • 13 Downloads

Abstract

This paper presents a vision-based estimation and guidance method to enable a UAV to fly a circular orbit around a moving target. The target motion is estimated using a Kalman filter design combining an onboard GPS and inertial sensors with a target-pointing vector obtained from a vision system. The aircraft is guided to orbit the moving target by a simple guidance law that deploys the relative side-bearing angle and the relative velocity with respect to the target. The proposed method is demonstrated using simulations and flight tests.

Keywords

Side-bearing guidance Vision-based estimation Moving target Kalman filter Flight test 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (KRF) funded by the Ministry of Education (NRF-2015R1D1A1A01060574). The author also thanks Ryu, Hanseok and Kim, Yong-Rae for their contributions to the flight tests.

References

  1. 1.
    Frew E, Lawrence D, Morris S (2008) Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields. J Guid Control Dyn 31(2):290–306.  https://doi.org/10.2514/1.30507 CrossRefGoogle Scholar
  2. 2.
    Morris S, Frew E (2005) Cooperative tracking of moving targets by teams of autonomous unmanned air vehicles. MLB Co., TRFA9550-04-C-0107, Mountain ViewCrossRefGoogle Scholar
  3. 3.
    Quigley M, Goodrich M, Griffiths S, Eldredge A, Beard R (2005) Target acquisition, localisation, and surveillance using a fixed-wing mini-UAV and gimbaled camera. In: IEEE international conference on robotics and automation. IEEE Publ., Piscataway, pp 2600–2605Google Scholar
  4. 4.
    Prevost C, Theriault O, Desbiens A, Poulin E (2009) Receding horizon model-based predictive control for dynamic target tracking: a comparative study. In: AIAA guidance, navigation, and control conference, Chicago; also AIAA Paper 2009-6268Google Scholar
  5. 5.
    Modirrousta A, Sohrab M, Dehghan SM (2016) A modified guidance law for ground moving target tracking with a class of the fast adaptive second-order sliding mode. Trans Inst Meas Control 38(7):819–831.  https://doi.org/10.1177/0142331215589807 CrossRefGoogle Scholar
  6. 6.
    Dobrokhodov V, Kaminer I, Jones K, Ghabcheloo R (2008) Vision-based tracking and motion estimation for moving targets using small UAVs. J Guid Control Dyn 31(4):907–917CrossRefGoogle Scholar
  7. 7.
    Zhang M, Liu H (2010) Vision-based tracking and estimation of ground moving target using unmanned aerial vehicle. American control conference, BaltimoreGoogle Scholar
  8. 8.
    Park S (2016) Circling over a target with relative side bearing. J Guid Control Dyn 39(6):1450–1456.  https://doi.org/10.2514/1.G001421 CrossRefGoogle Scholar
  9. 9.
    Park S (2016) Vision-based guidance for loitering over a target. Int J Aeronaut Space Sci 17(3):366–377.  https://doi.org/10.5139/IJASS.2016.17.3.366 CrossRefGoogle Scholar
  10. 10.
    La Salle JP (1976) Stability of nonautonomous systems. Nonlinear Anal Theory Methods Appl 1(1):83–91.  https://doi.org/10.1016/0362-546X(76)90011-0 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gelb A (1974) Applied optimal estimation. MIT Press, CambridgeGoogle Scholar
  12. 12.
    Antsaklis P, Michel A (2007) A linear systems primer. Birkhauser, BaselzbMATHGoogle Scholar
  13. 13.
    Pachter M, Ceccarelli N, Chandler PR (2008) Estimating MAV’s heading and the wind speed and direction using GPS, inertial and air speed measurements. In: AIAA guidance, navigation and control conference, AIAA Paper 2008-6311Google Scholar
  14. 14.
    Myschik S, Heller M, Holzapfel F, Sachs G (2004) Low-cost wind measurement system for small aircraft. In: AIAA guidance, navigation and control conference, AIAA Paper 2004-5240Google Scholar
  15. 15.
    Myschik S, Sachs G (2007) Flight testing an integrated wind/airdata and navigation system for general aviation aircraft. In: AIAA guidance, navigation and control conference, AIAA Paper 2007-6796Google Scholar
  16. 16.
    Langelaan JW, Alley N, Neidhoefer J (2011) Wind field estimation for small unmanned aerial vehicles. J Guid Control Dyn 34(4):1016–1030CrossRefGoogle Scholar
  17. 17.
    Rodriguez AF, Andersen E, Bradley JF, Taylor CN (2007) Wind estimation using an optical flow sensor on a miniature air vehicle. In: AIAA guidance, navigation and control conference, AIAA Paper 2007-6614Google Scholar
  18. 18.
    Kumon M, Mizumoto I, Iwai Z (2005) Wind estimation by unmanned air vehicle with delta wing. In: Proceedings of the 2005 IEEE international conference on robotics and automation, BarcelonaGoogle Scholar
  19. 19.
    Hollister WM, Chivukula V, Tom B (1990) Winds aloft measurement and airspeed calibration using loran. In: AIAA guidance and control conference, PortlandGoogle Scholar
  20. 20.
    Lie A, Gebre-Egziabher D (2013) Synthetic air data system. J Aircr 50(4):1234–1249CrossRefGoogle Scholar
  21. 21.
    de Divitiis N (2003) Wind estimation on a lightweight vertical takeoff and landing uninhabited vehicle. J Aircr 40(4):759–767CrossRefGoogle Scholar
  22. 22.
    Park S (2016) Autonomous crabbing by estimating wind using only GPS velocity. IEEE Trans Aerosp Electron Syst 52(3):1399–1407CrossRefGoogle Scholar
  23. 23.
    Etkin B, Reid L (1996) Dynamics of flight, stability and control, 3rd edn. Wiley, New YorkGoogle Scholar
  24. 24.
    Nelson R (1989) Flight stability and automatic control. McGraw-Hill, New YorkGoogle Scholar
  25. 25.
    Lewis F, Stevens B (1992) Aircraft control and simulation. Wiley-Interscience, New YorkGoogle Scholar
  26. 26.
    Anderson JD (1991) Fundamentals of aerodynamics, 2nd edn. McGraw-Hill, MarylandGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  1. 1.School of Aerospace and Mechanical EngineeringKorea Aerospace UniversityGoyang-siSouth Korea
  2. 2.School of Electronics and Information EngineeringKorea Aerospace UniversityGoyang-siSouth Korea

Personalised recommendations