Attitude Maneuver of Dual Rigid Bodies Spacecraft Using hp-Adaptive Pseudo-spectral Method

  • ZhongGui Yi
  • XinSheng GeEmail author
Original Paper


The spatial attitude optimal control problem of a spacecraft system with dual rigid bodies interconnected by a frictionless universal joint is considered. Based on the conservation of angular momentum, the dynamical model of the system is deduced using Quaternion. For there exists non-square matrix in the dynamical equation caused by the representation of Quaternion, the first-order derivative of the scalar section in Quaternion is employed to serve as a pseudo-control input for the system. Then the motion planning problem of the system can be discretized into a nonlinear programming problem based on hp-adaptive Radau pseudo-spectral method. Comparing with the previous works, the hp-adaptive method and the pseudo-control input is combined together to deal with the potential non-square matrix. Also as a contrast to the use of pseudo-control input employed in hp-adaptive method, another method (the Radau pseudo-spectral method) and the theory of pseudo-inverse matrix is adopted. The effectiveness of hp-adaptive method on the system expressed by pseudo-control input and the rationality of the Radau pseudo-spectral method on the system expressed by pseudo-inverse matrix is demonstrated and verified perfectly through numerical simulation.


Dual rigid bodies spacecraft hp-adaptive Radau pseudo-spectral method Attitude optimal control Quaternion 



This work was supported by the National Natural Science Foundation of China (Grant nos: 11472058, 11732005).


  1. 1.
    Krishnaprasad PS (1990) Geometric phases and optimal reconfiguration for multibody systems. In: American control conference, pp 2440–2444Google Scholar
  2. 2.
    Chen CK, Sreenath N (1993) Control of coupled spatial two-body systems with nonholonomic constraints. IEEE Conf Decis Control 2:949–954Google Scholar
  3. 3.
    Kolmanovsky I, Mcclamroch NH, Coppola VT (1995) New results on control of multibody systems which conserve angular momentum. J Dyn Control Syst 1(4):447–462MathSciNetCrossRefGoogle Scholar
  4. 4.
    Reyhanoglu M, Mcclamroch NH (1992) Planar reorientation maneuvers of space multibody systems using internal controls. J Guid Control Dyn 15(6):1475–1480CrossRefGoogle Scholar
  5. 5.
    Fernandes C, Gurvits L, Li ZX (1994) Near-optimal nonholonomic motion planning for a system of coupled rigid bodies. IEEE Trans Autom Control 39(3):450–463MathSciNetCrossRefGoogle Scholar
  6. 6.
    Xia Y, Zhu Z, Fu M et al (2011) Attitude tracking of rigid Spacecraft with bounded disturbances. IEEE Trans Ind Electron 58(2):647–659CrossRefGoogle Scholar
  7. 7.
    Ge XS, Chen LQ (2004) Attitude control of a rigid spacecraft with two momentum wheel actuators using genetic algorithm. Acta Astronaut 55(1):3–8CrossRefGoogle Scholar
  8. 8.
    Ge XS, Chen LQ, Liu YZ (2007) Optimal control of the deployment process of solar wings on spacecraft. Acta Astronaut 60(8):684–690CrossRefGoogle Scholar
  9. 9.
    Gill PE, Murray W, Saunders MA (2006) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jain S, Tsiotras P (2008) Trajectory optimization using multiresolution techniques. J Guid Control Dyn 31(5):1424–1436CrossRefGoogle Scholar
  11. 11.
    Zhao YM, Tsiotras P (2015) Density functions for mesh refinement in numerical optimal control. J Guid Control Dyn 34(1):271–277CrossRefGoogle Scholar
  12. 12.
    Benson DA (2005) A Gauss pseudospectral transcription for optimal control. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  13. 13.
    Benson DA, Huntington GT, Thorvaldsen TP et al (2006) Direct trajectory optimization and costate estimation via an orthogonal collocation method. J Guid Control Dyn 29(6):1435–1439CrossRefGoogle Scholar
  14. 14.
    Huntington GT, Benson DA, Rao AV (2007) Optimal configuration of tetrahedral spacecraft formations. J Astronaut Sci 55(2):141–169CrossRefGoogle Scholar
  15. 15.
    Gong Q, Fahroo F, Ross IM (2015) Spectral algorithm for pseudospectral methods in optimal control. J Guid Control Dyn 31(3):460–471CrossRefGoogle Scholar
  16. 16.
    Kameswaran S, Biegler LT (2008) Convergence rates for direct transcription of optimal control problems using collocation at Radau points. Comput Optim Appl 41(1):81–126MathSciNetCrossRefGoogle Scholar
  17. 17.
    Garg D, Patterson M, Hager WW et al (2010) A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11):1843–1851MathSciNetCrossRefGoogle Scholar
  18. 18.
    Drewry G (2013) Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Comput Optim Appl 49(2):335–358MathSciNetGoogle Scholar
  19. 19.
    Elnagar G, Kazemi AM, Razzaghi M (1995) The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans Autom Control 40(10):1793–1796MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fahroo F, Ross IM (2002) Direct trajectory optimization by a Chebyshev pseudospectral method. J Guid Control Dyn 25(1):160–166CrossRefGoogle Scholar
  21. 21.
    Gong Q, Ross IM, Fahroo F (2010) Costate computation by a Chebyshev pseudospectral method. J Guid Control Dyn 33(2):623–628CrossRefGoogle Scholar
  22. 22.
    Ge XS, Yi ZG, Chen LQ (2017) Optimal control of attitude for coupled-rigid-body spacecraft via Chebyshev–Gauss pseudospectral method. Appl Math Mech 38(9):1257–1272MathSciNetCrossRefGoogle Scholar
  23. 23.
    Karniadakis GE, Sherwin SJ (1999) Spectral/hp element methods for CFD. Oxford University Press, New York, p 78zbMATHGoogle Scholar
  24. 24.
    Galvão Á, Gerritsma M, Maerschalck BD (2008) hp-adaptive least-squares spectral element method for hyperbolic partial differential equations. J Comput Appl Math 215(2):409–418MathSciNetCrossRefGoogle Scholar
  25. 25.
    Babuska I, Gui W (1986) The h, p, and hp versions of the finite element method in 1 dimension. Part III. The adaptive hp version. Numerische Mathematik 49(6):659–684MathSciNetCrossRefGoogle Scholar
  26. 26.
    Darby CL, Hager WW, Rao AV (2011) An hp-adaptive pseudospectral method for solving optimal control problems. Optim Control Appl Methods 32(4):476–502MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hager WW, Rao AV, Tsiotras P (2011) Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J Spacecr Rockets 48(3):433–445CrossRefGoogle Scholar
  28. 28.
    Patterson MA, Hager WW, Rao AV (2015) A ph mesh refinement method for optimal control. Optim Control Appl Methods 36(4):398–421MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu FJ, Hager WW, Rao AV (2015) Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction. J Franklin Inst 47(10):4081–4106MathSciNetCrossRefGoogle Scholar
  30. 30.
    Patterson MA, Rao AV (2014) GPOPS-II: a matlab software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. Acm Trans Math Softw 41(1):1–37MathSciNetCrossRefGoogle Scholar
  31. 31.
    Fernandes C, Gurvits L, Li ZX (1994) Attitude control of a space platform/manipulator system using internal motion. Int J Robot Res 13(4):289–304CrossRefGoogle Scholar
  32. 32.
    Darby CL (2011) hp-pseudospectral method for solving continuous-time nonlinear optimal control problems. Dissertations & Theses—GradworksGoogle Scholar
  33. 33.
    Isidori A (1999) Nonlinear control systems II, vol 1(5). Springer, London, pp 679–684CrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  1. 1.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.School of Mechanical and Electrical EngineeringBeijing Information Science and Technology UniversityBeijingChina

Personalised recommendations