Pendulum Modeling of Sloshing Motion Using Particle Swarm Optimization

  • Dong-Yeon Lee
  • Min-Hyun Cho
  • Han-Lim Choi
  • Min-Jea TahkEmail author
Original Paper


In this paper, we propose a technique for modeling the sloshing phenomenon as a pendulum. Sloshing model is generated under gravity conditions for nine inner mass ratios to the storage tank volume and 12 input types. The mass ratio ranges from 10 to 90%, in units of 10%. The input is divided into three types and four levels of magnitude. The particle swarm optimization algorithm, which is a metaheuristic method, is applied to perform the pendulum modeling. The pendulum consists of three variables: the mass ratio of the pendulum to the inner fluid mass, length, and damping coefficient. Using the optimized pendulum modeling variables for 108 cases, we analyze the change in pendulum model parameters due to the variation in the inner fluid mass and input.


Sloshing CFD Pendulum model PSO algorithm 



This research was supported by the Technology Development Program (no. 2016M1A3A1A02021187) funded by Korea Aerospace Research Institute (KARI).


  1. 1.
    Federal Aviation Administration (2014) Commercial space transportation 2014 year in reviewGoogle Scholar
  2. 2.
    Arianespace (2016) Ariane 5 user’s manualGoogle Scholar
  3. 3.
    Euroconsult (2016) Satellites to be Built and Launched by 2024Google Scholar
  4. 4.
    Faltinsen OM, Timokha AN (2009) “Sloshing”, citeulikeGoogle Scholar
  5. 5.
    Rognebakke OF, Faltinsen OM (2003) Coupling of sloshing and ship motions. J Ship Res 47(3):208–221Google Scholar
  6. 6.
    Liu D, Lin P (2009) Three-dimensional liquid sloshing in a tank with baffles. Ocean Eng 36(2):202–212CrossRefGoogle Scholar
  7. 7.
    Ibrahim RA, Pilipchuk VN, Ikeda T (2001) Recent advances in liquid sloshing dynamics. Appl Mech Rev 54(2):133–199CrossRefGoogle Scholar
  8. 8.
    Romero JA, Ramirez O, Fortanell JM, Martinez M, Lozano A (2006) Analysis of lateral sloshing forces within road containers with high fill levels. Proc Inst Mech Eng Part D J Automob Eng 220(3):303–312CrossRefGoogle Scholar
  9. 9.
    Marsell B, Gangadharan S, Chatman Y, Sudermann J, Schlee K, Ristow J (2009) A CFD approach to modeling spacecraft fuel slosh. 47th AIAA Aerospace Sciences Meeting, Jan 2009, pp 2009–0366Google Scholar
  10. 10.
    Liu D, Lin P (2006) A numerical study of three-dimensional liquid sloshing in tanks. J Comput Phys 227(8):3921–3939CrossRefGoogle Scholar
  11. 11.
    Lee DH, Kim MH, Kwon SH, Kim JW, Lee YB (2007) A parametric sensitivity study on LNG tank sloshing loads by numerical simulations. Ocean Eng 34(1):3–9CrossRefGoogle Scholar
  12. 12.
    Yoo JT, Yeon JH, Youn SP (1999) A study on the analysis of fuel sloshing in a liquid propellant tank and optimum design of ring baffles. J Korean Soc Aeronaut Sp Sci 27(5):60Google Scholar
  13. 13.
    Kang JY, Lee S (2008) Attitude acquisition of a satellite with a partially filled liquid tank. J Guid Control Dyn 31(3):790–792CrossRefGoogle Scholar
  14. 14.
    Navickas J, Cheng P (1990) Effect of propellant sloshing on the design of space vehicle propellant storage systems. 26th joint propulsion conference meeting papers, OrlandoGoogle Scholar
  15. 15.
    Foreest A (2010) Modeling of cryogenic sloshing including heat and mass transfer. In: Proceedings of 46th AIAA/ASME/SAE/SEE joint propulsion conference and exhibit, Nashville, USA, pp 1–20Google Scholar
  16. 16.
    Behruzi P, Konopka M, de Rose F, Schwartz G (2014) Cryogenic slosh modeling in LNG ship tanks and spacecrafts. The twenty-fourth international ocean and polar engineering conferenceGoogle Scholar
  17. 17.
    Grayson G, Lopez A, Chandler F, Hastings L, Tucker S (2006) Cryogenic tank modeling for the Saturn AS-203 experiment. AIAA paper, vol 5258, no. 9Google Scholar
  18. 18.
    Sumner LE (1965) Experimentally determined pendulum analogy of liquid sloshing in spherical and oblate-spheroidal tanks. NASA Technical Note, D-2737Google Scholar
  19. 19.
    Aliabadi S, Johnson A, Abedi J (2003) Comparison of finite element and pendulum models for simulation of sloshing. Comput Fluids 32(4):535–545CrossRefGoogle Scholar
  20. 20.
    Tzamtzi MP, Koumboulis FN (2007) Sloshing control in tilting phases of the pouring process. Int J Math Phys Eng Sci 1:175–182Google Scholar
  21. 21.
    Sopasakis P, Bernardini D, Strauch H, Bennani S, Bemporad A (2015) Sloshing-aware attitude control of impulsively actuated spacecraft. 2015 European Control Conference (ECC), July 2015, pp 1376–1381Google Scholar
  22. 22.
    de Souza LCG, de Souza AG (2014) Satellite attitude control system design considering the fuel slosh dynamics. Shock VibGoogle Scholar
  23. 23.
    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. Micro machine and human science, 1995. MHS’95. In: Proceedings of the sixth international symposium on 1995, pp 39–43Google Scholar
  24. 24.
    Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57CrossRefGoogle Scholar
  25. 25.
    Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51MathSciNetCrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Dong-Yeon Lee
    • 1
  • Min-Hyun Cho
    • 1
  • Han-Lim Choi
    • 1
  • Min-Jea Tahk
    • 1
    Email author
  1. 1.Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations