Skip to main content
Log in

Reduction of hexavalent chromium by a moderately halophilic bacterium, Halomonas smyrnensis KS802 under saline environment

Environmental Sustainability Aims and scope Submit manuscript

Abstract

In the present study a moderately halophilic bacterium, Halomonas smyrnensis KS802 (GenBank Accession No. KU982965) was isolated from multi-pond solar salterns of Gujarat, India and evaluated for its potential to reduce hexavalent chromium during growth. Complete reduction of 2 mM Cr(VI) was achieved in 12 h when the strain was grown in medium for halophiles (MH medium) supplemented with 4% galactose and 5% NaCl at pH 7 and 32 °C. Presence of Mn, Cu and Pb in the culture media were non-toxic for growth and Cr(VI) reduction, while carbonyl cyanide-m-chlorophenyl hydrazone (CCC) inhibited both growth and Cr(VI) reduction. Hexavalent chromium of the untreated tannery effluent (100 µM) was completely reduced by the isolate in 6 h. The rate kinetics of reduction revealed a well fitted linearized exponential equation at a reduction rate of 5.9–1.8 × 10−2 h−1 in the range of 100–500 µM of Cr(VI) in the tannery effluent. Fourier transformed infrared (FTIR) spectroscopic analysis of chromate reducing cells showed characteristic shifting of functional group specific peaks possibly due to binding of reduced Cr-species. Scanning electron microscopy-energy dispersive X-ray (SEM–EDX) studies also supported deposition of Cr(III) on bacterial cells along with distinct changes in cellular morphology. Moreover, the powder X-ray diffraction (p XRD) pattern indicated the possible formation and complexation of chromium hydrogen phosphate and chromium hydroxide with cells of H. smyrnensis KS802.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Abubacker G, Ramanathan H (2003) Bioremediation of tannery effluent pollutants. Bioresour Technol 19:237–242

    CAS  Google Scholar 

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake RII, Matin A (2004) Mechanisms of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Amoozegar MA, Ghasemi A, Razavi MR, Naddaf S (2007) Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochem 42:1475–1479

    Article  CAS  Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotox Environ Saf 147:102–109

    Article  CAS  Google Scholar 

  • Camargo FAO, Bento FM, Okeke BC, Frankenberger WT (2003) Chromate reduction by chromium resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual 32:1228–1233

    Article  CAS  Google Scholar 

  • Chandra P, Singh DP (2014) Removal of Cr(VI) by a halotolerant bacterium Halomonas sp. CSB 5 isolated from Sambhar salt lake Rajasthan (India). Cell Mol Biol 60:64–72

    CAS  Google Scholar 

  • Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H (2014) Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–121

    Article  CAS  Google Scholar 

  • Dey S, Paul AK (2012) Optimization of cultural conditions for growth associated chromate reduction by Arthrobacter sp. SUK 1201 isolated from chromite mine Overburden. J Hazard Mater 213–214:200–206

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey BD (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85:1471–1479

    CAS  Google Scholar 

  • Ehrlich HL (2002) How microbes mobilize metals in ores: a view of current understandings and proposals for further research. Miner Metall Process 19:220–224

    CAS  Google Scholar 

  • Focardi S, Pepi M, Landi G, Gasperini S, Ruta M, Di Biasio P, Focardi SE (2012) Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. Int Biodeterior Biodegradation 66:63–70

    Article  CAS  Google Scholar 

  • Ganguli A, Tripathi AK (1999) Survival and chromate reducing ability of Pseudomonas aeruginosa A2Chr in industrial effluents. Lett Appl Microbiol 60:76–80

    Article  Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. Am Soc Microbiol, Washigton DC

    Google Scholar 

  • Gunaratnam M, Grant MH (2008) Cr(VI) inhibits DNA, RNA and protein syntheses in hepatocytes: involvement of glutathione reductase, reduced glutathione and DT-diaphorase. Toxicol In Vitro 22:879–886

    Article  CAS  Google Scholar 

  • Joutey NT, Sayel H, Bahafid W, El Ghachtouli N (2016) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 233:45–69

    Google Scholar 

  • Karthik C, Barathi S, Pugazhendhi A, Ramkumar VS, Arulselvi PI (2017) Evaluation of Cr(VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. J Hazard Mater 333:42–53

    Article  CAS  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger T (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 136:91–121

    Article  CAS  Google Scholar 

  • Lotlikar NP, Damare SR, Meena RM, Linsy P, Mascarenhas B (2018) Potential of marine-derived fungi to remove hexavalent chromium pollutant from culture broth. Indian J Microbiol 58:182–192

    Article  CAS  Google Scholar 

  • Mabrouk MEM, Arayes MA, Sabry SA (2014) Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent. Biotechnol Biotechnol Equip 28:659–667

    Article  CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Meghraj M, Avudainayagam S, Naidu R (2004) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54

    Article  CAS  Google Scholar 

  • Mishra RR, Dhal B, Dutta SK, Dangar TK, Das NN, Thatoi HN (2012) Optimization and characterization of chromium(VI) reduction in saline condition by moderately halophilic Vigribacillus sp. isolated from mangrove soil of Bhitarkanika. India. J Hazard Mater 227–228:219–226

    Article  CAS  Google Scholar 

  • Murugavelh S, Mohanty K (2012) Bioreduction of hexavalent chromium by free cells and cell free extracts of Halomonas sp. Chem Eng J 203:415–422

    Article  CAS  Google Scholar 

  • Murugavelh S, Mohanty K (2013) Bioreduction of chromate by immobilized cells of Halomonas sp. Int J Energ Environ 4:349–356

    CAS  Google Scholar 

  • Okeke BC, Laymon J, Crenshaw S, Oji C (2008) Environmental and kinetic parameters for Cr(VI) bioreduction by a bacterial monoculture purified from Cr(VI)-resistant consortium. Biol Trace Elem Res 123(1–3):229–241

    Article  CAS  Google Scholar 

  • Opperman DJ, van Heerden E (2007) Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J Appl Microbiol 103:1907–1913

    Article  CAS  Google Scholar 

  • Park CH, Keyhan B, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  CAS  Google Scholar 

  • Pinon-Castillo HA, Brito EMS, Goni-Urriza M, Guyoneaud R, Duran R, Nevarez-Moorillon GV, Gutierrez-Corona JF, Caretta CA, Reyna-Lopez GE (2010) Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent. J Appl Microbiol 109:2173–2182

    Article  CAS  Google Scholar 

  • Poli A, Nicolaus B, Denizci AA, Yavuzturk B, Kazan D (2013) Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 63:10–18

    Article  Google Scholar 

  • Ramesh C, Mohan kumar K, Senthil M, Ragunathan V (2012) Antibacterial activity of Cr2O3 nanoparticles against E. coli; reduction of chromate ions by Arachis hypogaea leaves. Arch Appl Sci Res 4:1894–1900

    CAS  Google Scholar 

  • Shapovalova AA, Khijniak TV, Tourova TP, Dlu Sorokin (2009) Halomonas chromatireducens sp. nov., a new denitrifying facultatively haloalkalophilic bacterium from soda salt marshes capable of aerobic chromate reduction. Microbiology 78:102–111

    Article  CAS  Google Scholar 

  • Sharma S, Adholeya A (2012) Hexavalent chromium reduction in tannery effluent by bacterial species isolated from tannery effluent contaminated soil. J Environ Sci Tech 5:142–154

    Article  CAS  Google Scholar 

  • Smibert RM, Krieg NR (1981) General characterization. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Philips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, p 411e442

    Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  Google Scholar 

  • Subramanian S, Sam S, Jayaraman G (2012) Hexavalent chromium reduction by metal resistant and halotolerant Planococcus maritimus VITP21. Afr J Microbiol Res 6:7339–7349

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41:1332–1337

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W-improving the sensitivity of progressive multiple sequence alignment through sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Euk Microbiol 46:327–338

    Article  CAS  Google Scholar 

  • Upadhyay N, Vishwakarma K, Singh J, Mishra M, Kumar V, Rani R, Mishra RK, Chauhan DK, Tripathi DK, Sharma S (2017) Tolerance and reduction of chromium (VI) by Bacillus sp. MNU16 isolated from contaminated Coal Mining Soil. Front Plant Sci 8:778

    Article  Google Scholar 

  • Van Engelen MR, Peyton BM, Mormile MR, Pinkart HC (2008) Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington. Biodegradation 19:841–850

    Article  CAS  Google Scholar 

  • Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1986

    Google Scholar 

  • Voica DM, Bartha L, Banciu HL, Oren A (2016) Heavy metal resistance in halophilic bacteria and archaea. FEMS Microbiol Lett 363:1–9

    Article  CAS  Google Scholar 

  • Vreeland RH (2015) Halomonas. Bergey’s Manual of Systematics of Archaea and Bacteria. pp 1–19. https://doi.org/10.1002/9781118960608.gbm01190

  • Wani PA, Khan MS, Zaid A (2007) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by grants from University Grants Commission, India under the scheme of Rajiv Gandhi National Fellowship (Sanction No. F.14-2(SC)/2008 (SA-III), 31 March, 2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Paul.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, J., Bose, P., Mandal, S. et al. Reduction of hexavalent chromium by a moderately halophilic bacterium, Halomonas smyrnensis KS802 under saline environment. Environmental Sustainability 1, 411–423 (2018). https://doi.org/10.1007/s42398-018-00037-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-018-00037-x

Keywords

Navigation