Advertisement

Indian Phytopathology

, Volume 71, Issue 4, pp 579–587 | Cite as

Trichoderma pseudokoningii identified based on morphology was re-identified as T. longibrachiatum through molecular characterization

  • T. PrameeladeviEmail author
  • N. Prabhakaran
  • Deeba Kamil
  • R. Sudeep Toppo
  • Akanksha Tyagi
Research Article
  • 7 Downloads

Abstract

Trichoderma pseudokoningii and T. longibrachiatum have many morphological similarities viz,diffusion of yellow pigment through the agar, sparsely branched conidiophores having a high proportion of solitary phialides; size and shape of phialides, shape and colour of conidia and presence of chlamydospores with minute differences in conidiation and size of conidia. Due to the overlapping characters, the morphology alone is not sufficient in differentiating these two species, therefore Internal Transcribed Spacer (ITS) region and Translation Elongation Factor 1 alpha (tef1) gene were used to confirm identification of T. pseudokoningii and T. longibrachiatum. Thirty two isolates of Trichoderma species were collected from different parts of India and identified as T. pseudokoningii (17 isolates) and T. longibrachiatum (15 isolates) based on morphology. But all the 17 T. pseudokoningii isolates have been proved as T. longibrachiatum through ITS region and tef1 gene sequence analysis. Apart from the NCBI-BLAST, these Indian T. pseudokoningii isolates were confirmed as T. longibrachiatum also through Trichokey and TrichoBLAST. There is only one Indian accession (ITS sequence) available in NCBI database in the name of T. pseudokoningii (JX500737) from Mizoram state, but it is also not proved to be T. pseudokoningii, when it was analysed through Trichokey (showed as T.effusum) and TrichoBLAST (T. citrinoviride). The present analysis confirmed that Trichoderma isolates identified as T. pseudokoningii in India are truly T. longibrachiatum.

Keywords

Indian isolates ITS region Phylogenetic analysis tef1 gene 

Notes

Acknowledgements

The authors thank the Head, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi for the help in various aspects of this study.

References

  1. Bisset J (1991a) A revision of the genus Trichoderma III. Sect. Pachybasium. Can J Bot 69:2373–2417CrossRefGoogle Scholar
  2. Bisset J (1991b) A revision of the genus Trichoderma IV. Additional notes on section Longibrachiatum. Can J Bot 69:2418–2420CrossRefGoogle Scholar
  3. Bissett J (1984) A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can J Bot 62:924–931CrossRefGoogle Scholar
  4. Bissett J (1991) A revision of the genus Trichoderma. II. Infrageneric classification. Can J Bot 69:2357–2372CrossRefGoogle Scholar
  5. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556CrossRefGoogle Scholar
  6. Culling KW (1992) Design and testing of a plant specific PCR primer for ecological evolutionary studies. Mol Ecol 1:233–240CrossRefGoogle Scholar
  7. Druzhinina IS, Kubicek CP (2005) Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species cluster. Journal of Zhejiang University SCIENCE B 6B(2):100–112CrossRefGoogle Scholar
  8. Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828CrossRefGoogle Scholar
  9. Druzhinina IS, Komoń-Zelazowska M, Ismaiel A, Jaklitsch WM, Mulaw T, Samuels GJ, Kubicek CP (2012) Molecular phylogeny and species delimitation in the Longibrachiatum Clade of Trichoderma. Fungal Genet Biol 49(5):358–368CrossRefGoogle Scholar
  10. Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 46:615–631CrossRefGoogle Scholar
  11. Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS (2005) Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia 97:1365–1378CrossRefGoogle Scholar
  12. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotides sequences. Mol Biol Evol 2:87–90CrossRefGoogle Scholar
  13. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, CasasFlores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Dohren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gomez-Rodriguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernandez-Onate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lubeck M, Lubeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40CrossRefGoogle Scholar
  14. Kuhls K, Lieckfeldt E, Samuels GJ, Börner T, Meyer W, Kubicek CP (1997) Revision of Trichoderma sect. Longibrachiatum including related teleomorphs based on analysis of ribosomal DNA internal transcribed spacer sequences. Mycologia 89:442–460CrossRefGoogle Scholar
  15. Kuhls K, Lieckfeldt E, Börner T, Guého E (1999) Molecular re-identification of human pathogenic Trichoderma isolates as Trichoderma longibrachiatum and Trichoderma citrinoviride. Med Mycol 37(1):25–33CrossRefGoogle Scholar
  16. Latha J, Verma A, Mukherjee PK (2002) PCR-fingerprinting of some Trichoderma isolates from two Indian type culture collections – a need for re-identification of these economically important fungi. Curr Sci 83(4):372–374Google Scholar
  17. Pandey A, Palni LMS, Bisht D (2001) Dominant fungi in the rhizosphere of established tea bushes and their interaction with the dominant bacteria under in situ conditions. Mycol Res 156:377–382Google Scholar
  18. Prabhakaran N, Prameeladevi T, Sathiyabama M, Kamil D (2015a) Screening of different Trichoderma species against agriculturally important foliar plant pathogens. J Environ Biol 36(1):191–198Google Scholar
  19. Prabhakaran N, Prameeladevi T, Sathiyabama M, Kamil D (2015b) Multiplex PCR for detection and differentiation of diverse Trichoderma species. Ann Microbiol 65(3):1591–1595CrossRefGoogle Scholar
  20. Prameeladevi T, Prabhakaran N, Kamil D, Borah JL, Pandey P (2012a) Development of species specific markers for detection of Trichoderma species. Vegetos 2502:207–217Google Scholar
  21. Prameeladevi T, Prabhakaran N, Kamil D, Pandey P, Borah JL (2012b) Characterization of Indian native isolates of Trichoderma spp. and assessment of their bio-control efficiency against plant pathogens. Afr J Biotech 1185:15150–15160Google Scholar
  22. Priya KS, Nagaveni HC (2009) Screening of Trichoderma spp. against Lasiodiplodia theobromae causing fruit rot of Elaeocarpus munronii. Indian J Pl Prot 37(1/2):166–169Google Scholar
  23. Rifai MA (1969) A revision of the genus Trichoderma. Myc Papers 116:1–56Google Scholar
  24. Samuels GJ (2006) Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96:195–206CrossRefGoogle Scholar
  25. Samuels G, Petrini O, Kuhls K, Lieckfeldt E, Kubicek CP (1998) The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Stud Mycol 41:1–54Google Scholar
  26. Samuels GJ, Ismaiel A, Mullaw TB, Szakacs G, Druzhinina IS, Kubicek CP, Jaklitsch WM (2012) The Longibrachiatum clade of Trichoderma: a revision with new species. Fungal Diversity 55(1):77–108CrossRefGoogle Scholar
  27. Shah S, Nasreen S, Sheikh PA (2012) Cultural and morphological characterization of Trichoderma spp. associated with green mold disease of Pleurotus spp. in Kashmir. Res J Microbiol 7:139–144CrossRefGoogle Scholar
  28. Shanmugam V, Sharma V (2008) Genetic relatedness of Trichoderma isolates antagonistic against Fusarium oxysporum f. sp. dianthi inflicting carnation wilt. Folia Microbiol 53(2):130–138CrossRefGoogle Scholar
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  30. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc Acids Res 22:4673–4680CrossRefGoogle Scholar
  31. White TJ, Bruns T, Lees S and Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Gelfland DH, Innis MA, Sninsky JJ, Widden P, and Abitbol JJ (1980) Seasonality of Trichoderma species in a spruce-forest soil. Mycologia 72:775–784Google Scholar

Copyright information

© Indian Phytopathological Society 2018

Authors and Affiliations

  • T. Prameeladevi
    • 1
    Email author
  • N. Prabhakaran
    • 1
  • Deeba Kamil
    • 1
  • R. Sudeep Toppo
    • 1
  • Akanksha Tyagi
    • 1
  1. 1.Division of Plant PathologyICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations