Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Discrete Element Simulation Study on Particle Segregation Effect of a Hemispherical Shell Swing-Oscillating Trough Under Combination Swing-Oscillating

  • 5 Accesses

Abstract

In order to enhance the segregation effect of material particles in a hemispherical shell swing-oscillating trough under combination swing-oscillating, by means of three dimensional discrete element method, and by use of the two-dimensional dry granules of plastic ball and steel ball, the discrete element simulation study of particle segregation process is carried out in turn in three cases, which is composed of a single swing-oscillating in smooth trough, a combination swing-oscillating in smooth trough, and a combination swing-oscillating in adding bulge trough. The particle segregation effect was evaluated by particle volume concentration and combined with segregation cloud picture simulated. The result indicates that segregation effect of combination swing-oscillating is better than that in single swing-oscillating; layering effect of the trough added bulge is better than that in the smooth trough. And compared to single swing-oscillating in smooth trough, the degree of segregation of particles in added bulge trough can be increased by 10–15% when being combination swing-oscillating.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    K.Q. Lu, J.X. Liu, Static and dynamic properties of granular matter (I). PHYSICS-BEIJING 33(9), 629–635 (2004)

  2. 2.

    H.M. Jaeger, S.R. Nagel, R.P. Behringer, Granular solids, liquids, and gases. Rev. Mod. Phys. 68(68), 1259 (1996)

  3. 3.

    L.P. Kadanoff, Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71(1), 435–444 (1999)

  4. 4.

    J.M. Ottino, D.V. Khakhar, Mixing and segregation of gra-nular materials. Annu. Rev. Fluid Mech. 32, 55–91 (2000)

  5. 5.

    T. Mullin, Coarsen zing of self-organized clusters in binary mixtures of particles. Phys. Rev. Lett. 84, 4741–4746 (2000)

  6. 6.

    D.S. Bao, X.S. Zhang, Granular matter and granular flow. J. Zhejiang Univ. 30(5), 514–517 (2003)

  7. 7.

    P. Chaiworn, F.F. Chung, C.Y. Wang, S.S. Liaw, Brazil nut effect in annular container. Granul. Matter 13, 379–384 (2011)

  8. 8.

    R. Brito, R. Soto, Competition of Brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture. Eur. Phys. J. 179, 207–219 (2009)

  9. 9.

    H. Decai, L. Ming, S. Surajit et al., Spin Brazil-nut effect and its reverse in a rotating double-walled drum. Eur. Phys. J. 36, 41 (2013)

  10. 10.

    T. Shinbrot, Granular materials-The Brazil nut effect-in reverse. Nature 429, 352–353 (2004)

  11. 11.

    T. Mullin, Mixing and de-mixing. Science 295(5561), 1851 (2002)

  12. 12.

    Z. Jiang, K. Lu, M. Hou, W. Chen, Sandwich-like segregation in vertically vibrated binary granular mixtures. Acta Physica Sin. 52(9), 2244–2248 (2003)

  13. 13.

    C. Zeilstra, M.A. van der Hoef, J.A.M. Kuipers, Simulation of density segregation in vibrated beds. Phys. Rev. E 77(3), 031309 (2008)

  14. 14.

    K. Hu, Z.A. Xie, P. Wu et al., Convecting particle diffusion in a binary particle system under vertical vibration. Soft Matter 10(24), 4348–4359 (2014)

  15. 15.

    N. Rivas, P. Cordero, D. Risso et al., Segregation in quasi-two-dimensional granular systems. New J. Phys. 13(5), 055018 (2011)

  16. 16.

    P. Wu, S. Wang, Z. Xie, Y. Huang, L. Tong, P. Zhang, S. Yin, C. Liu, L. Wang, Influence of rotation on BN separation in binary particle system. AIP Conf. Proc. 1542, 722–725 (2013)

  17. 17.

    X.D. Ma, Y.B. Zhang, Y. Liu et al., Simulation of grain segregation under horizontal rotational oscillations. Granul. Matter 18(1), 8 (2016)

  18. 18.

    X. Ma, B. Guo, L. Li, Simulation and experiment study on segregation mechanism of rice from straws under horizontal vibration. Biosyst. Eng. 186, 1–13 (2019)

  19. 19.

    F.F. Chung, S.S. Liaw, M.C. Ho, Energy and phase transition in a horizontally vibrating granular system. Granul. Matter 12(4), 369–374 (2010)

  20. 20.

    T. Schnautz, R. Brito, C.A. Kruelle, I. Rehberg, A horizontal Brazil-Nut effect and its reverse. Phys. Rev. Lett. 95(2), 028001 (2005)

  21. 21.

    C. Zeilstra, M.A. Van der Hoef, J.A.M. Kuipers, Simulati-on of density segregation in vibrated beds. Phys. Rev. E 77(3), 031309 (2008)

  22. 22.

    H. Li, Y. Li, Z. Tang et al., Numerical simulation and analysis of vibration screening based on EDEM. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 27(5), 117–121 (2011)

  23. 23.

    J. Li, C. Webb, S.S. Pandiella, G.M. Campbell, Discrete particle motion on sieves-a numerical study using the DEM simulation. Powder Technol. 133, 190–203 (2003)

  24. 24.

    D.B. Hastie, P.W. Wypych. Experimental validation of particle flow through conveyor transfer hoods via continuum and discrete element methods. Mech. Mater. 42(4), 383–394 (2010)

  25. 25.

    T. Cornelia, P. Floran, S. Walter et al., impact modificati-on of polypropylene with ethylene-α-olefin copolymers: influ-ence of density and comonomer. AIP Conf. Proc. 1599, 94–97 (2014)

  26. 26.

    Y. Xia, M. Yang, L.I. Zhongmin et al., The negative poisson’s ratio effect of polyolefin blends. Acta Polym. Sin. 1(2), 221–224 (2003)

  27. 27.

    R.S. Lakes, Design considerations for materials with neg-ative poisson’s ratios. J. Mech. Des. 115, 696–700 (1993)

  28. 28.

    X. Ma, Y. Zhang, H. Ran, et al. Segregation simulation of binary granular matter under horizontal pendulum vibrations. Internat. J. Mod. Phys. B. 30(30), 1650214 (2016)

  29. 29.

    L.L. Zhao, Numerical simulation on segregation process of particles using 3D discrete element method. Acta Phys. Sin. 59(3), 1870–1876 (2010)

Download references

Acknowledgements

We would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51775258).

Author information

Correspondence to Lingling Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, Z., Xu, J. et al. Discrete Element Simulation Study on Particle Segregation Effect of a Hemispherical Shell Swing-Oscillating Trough Under Combination Swing-Oscillating. Trans. Electr. Electron. Mater. (2020). https://doi.org/10.1007/s42341-020-00173-4

Download citation

Keywords

  • Swing-oscillating
  • Particles
  • Layering
  • Discrete element method
  • Simulation