Advertisement

Effect of RF Sputtering Power on the Electrical Properties of Si–In–Zn–O Thin Film Transistors

  • Jae Min Byun
  • Sang Yeol LeeEmail author
Regular Paper
  • 7 Downloads

Abstract

The electrical characteristics of the amorphous silicon–indium–zinc–oxide (a-SIZO) thin film transistors (TFTs) has been investigated depending on the RF magnetron sputtering power. As increasing the radio frequency sputtering power from 20 to 40 W, the electrical characteristics showed the change of threshold voltage (Vth) to negative direction from 2 to −2.61 V due to the increase of oxygen vacancy (VO). Based on the shift of Vth controlled by sputtering power, inverter was fabricated with the TFTs fabricated at sputtering power of 20 W and 30 W as enhancement mode and 40 W as depletion mode. The voltage transfer curve showed inversion clearly, and the voltage gain showed 1 V/V and 1.65 V/V, respectively. These results reveal that it is possible to apply to integrated circuits or the next generation memory devices simply by controlling processing conditions.

Keywords

Amorphous oxide semiconductor Thin film transistor RF power dependency Depletion load type inverter SiInZnO 

Notes

References

  1. 1.
    E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945 (2012)CrossRefGoogle Scholar
  2. 2.
    T. Hirao, M. Furuta, H. Furuta, T. Matsuda, T. Hiramatsu, H. Hokari, M. Yoshida, H. Ishii, M. Kakegawa, J. SID. 15, 17 (2007)Google Scholar
  3. 3.
    J.K. Jeong, Semicond. Sci. Technol. 26, 034008 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Hosono, M. Yasukawa, H. Kawazoe, J. Non-Cryst. Solids. 203, 334 (1996)CrossRefGoogle Scholar
  5. 5.
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)CrossRefGoogle Scholar
  6. 6.
    T. Kamiya, K. Nomura, H. Hosono, J. Disp. Technol. 5, 462 (2009)CrossRefGoogle Scholar
  7. 7.
    N. Satio, T. Sawabe, J. Kataoka, T. Ueda, T. Tezuka, K. Ikeda, Jpn. J. Appl. Phys. 58, SBBJ07 (2019)Google Scholar
  8. 8.
    D.H. Kim, H.K. Jung, D.H. Kim, S.Y. Lee, Appl. Phys. Lett. 99, 162101 (2011)CrossRefGoogle Scholar
  9. 9.
    E. Chong, Y.S. Chun, S.Y. Lee, Appl. Phys. Lett. 97, 102102 (2010)CrossRefGoogle Scholar
  10. 10.
    E. Chong, Y.S. Chun, S.Y. Lee, Electrochem. Solid-State Lett. 14, H96 (2011)CrossRefGoogle Scholar
  11. 11.
    P.-B. Shea, J. Kanicki, J. Appl. Phys. 98, 014503 (2005)CrossRefGoogle Scholar
  12. 12.
    J.H. Jeong, H.W. Yang, J.-S. Park, J.K. Jeong, Y.-G. Mo, H.D. Kim, J. Song, C.S. Hwang, Electrochem. Solid-State Lett. 11, H157 (2008)CrossRefGoogle Scholar
  13. 13.
    Z. Yang, J. Yang, T. Meng, M. Qu, Q. Zhang, Mat. Lett. 166, 46 (2016)CrossRefGoogle Scholar
  14. 14.
    W.-F. Wu, B.-S. Chiou, Thin Solid Films 247, 201 (1994)CrossRefGoogle Scholar
  15. 15.
    D.-K. Hwang, K.-H. Bang, M.-C. Jeong, J.-M. Myoung, J. Cryst. Growth 254, 449 (2003)CrossRefGoogle Scholar
  16. 16.
    P.C. Debnath, S.Y. Lee, Appl. Phys. Lett. 101, 092103 (2012)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Semiconductor EngineeringCheongju UniversityCheongjuRepublic of Korea
  2. 2.Research Institute of Advanced Semiconductor Convergence TechnologyCheongjuRepublic of Korea

Personalised recommendations