Advertisement

Investigating Undoped HfO2 as Ferroelectric Oxide in Leaky and Non-Leaky FE–DE Heterostructure

  • Bhaskar AwadhiyaEmail author
  • Pravin N. Kondekar
  • Ashvinee Deo Meshram
Regular Paper
  • 1 Downloads

Abstract

In this paper, we have investigated non-leaky and leaky FE–DE heterostructure with undoped HfO2 and Zr doped HfO2 as a ferroelectric material. Use of undoped HfO2 in place of Zr doped HfO2 as a ferroelectric material will ease the deposition process and simplify the processing steps, as ferroelectricity in undoped HfO2 can be obtained without introduction of dopant elements. This replacement of ferroelectric oxide enhances the performance of heterostructure in terms of absolute voltage amplification (\(V_{D} > V_{S}\)). Undoped HfO2 provides higher magnitude voltage amplification as compared to Zr doped HfO2 although the range to voltage amplification is reduced.

Keywords

Lead zirconium titnate (PZT) Ferroelectric (FE) Dielectric (DE) Paraelectric (PE) Landau–Khalatnikov (LK) Physical vapor deposition (PVD) Chemical vapor deposition (CVD) 

Notes

References

  1. 1.
    S. H. Shin, M. Masuduzzaman, M. A. Wahab, K. Maize, J. J. Gu, M. Si, A. Shakouri, P. D. Ye, M. A. Alam, Direct observation of self-heating in III–V gate-all-around nanowire MOSFETs, in 2014 IEEE International Electron Devices Meeting, 2014, pp. 20.3.1–20.3.4.  https://doi.org/10.1109/iedm.2014.7047088
  2. 2.
    M.A. Wahab, S. Shin, M.A. Alam, 3D modeling of spatio-temporal heat-transport in III-V gate-all-around transistors allows accurate estimation and optimization of nanowire temperature. IEEE Trans. Electron Devices 62(11), 3595–3604 (2015).  https://doi.org/10.1109/TED.2015.2478844 CrossRefGoogle Scholar
  3. 3.
    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100(5), 51606 (2006)CrossRefGoogle Scholar
  4. 4.
    B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, Q.M. Zhang, Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321(5890), 821–823 (2008).  https://doi.org/10.1126/science.1159655 CrossRefGoogle Scholar
  5. 5.
    S.-G. Lu, Q. Zhang, Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21(19), 1983–1987 (2009).  https://doi.org/10.1002/adma.200802902 CrossRefGoogle Scholar
  6. 6.
    U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M.I. Popovici, S.V. Kalinin, T. Mikolajick, Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn. J. Appl. Phys. 53(8S1), 08LE02 (2014).  https://doi.org/10.7567/jjap.53.08le02 CrossRefGoogle Scholar
  7. 7.
    T.S. Boscke, St. Teichert, D. Brauhaus, J. Muller, U. Schroder, U. Bottger, T. Mikolajick, Phase transitions in ferroelectric silicon doped hafnium oxide. Appl. Phys. Lett. 99(11), 112904 (2011).  https://doi.org/10.1063/1.3636434 CrossRefGoogle Scholar
  8. 8.
    J. Muller, S. Knebel, D. Brauhaus, U. Schroder, Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 100(8), 82905 (2012).  https://doi.org/10.1063/1.3688915 CrossRefGoogle Scholar
  9. 9.
    D. Zhou, J. Xu, Q. Lu, Y. Guan, F. Cao, X. Dong, J. Muller, T. Schenk, U. Schroder, Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 103(19), 192904 (2013).  https://doi.org/10.1063/1.4829064 CrossRefGoogle Scholar
  10. 10.
    E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A.P. Graham, T. Melde, U. Schroder, T. Mikolajick, Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films. Thin Solid Films 533, 88–92 (2013).  https://doi.org/10.1016/J.TSF.2012.11.125 CrossRefGoogle Scholar
  11. 11.
    P.D. Lomenzo, P. Zhao, Q. Takmeel, S. Moghaddam, T. Nishida, M. Nelson, C.M. Fancher, E.D. Grimley, X. Sang, J.M. Lebeau, J.L. Jones, Ferroelectric phenomena in Si-doped HfO2 thin films with TiN and Ir electrodes. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 32(3), 03D123 (2014).  https://doi.org/10.1116/1.4873323 Google Scholar
  12. 12.
    J. Muller, T.S. Boscke, D. Brauhaus, U. Schroder, U. Bottger, J. Sundqvist, P. Kucher, T. Mikolajick, L. Frey, Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl. Phys. Lett. 99(11), 112901 (2011).  https://doi.org/10.1063/1.3636417 CrossRefGoogle Scholar
  13. 13.
    J. Muller, T.S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12(8), 4318–4323 (2012).  https://doi.org/10.1021/nl302049k CrossRefGoogle Scholar
  14. 14.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, H.K. Kim, C.S. Hwang, Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Appl. Phys. Lett. 102(11), 112914 (2013).  https://doi.org/10.1063/1.4798265 CrossRefGoogle Scholar
  15. 15.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, C.S. Hwang, Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102(24), 242905 (2013).  https://doi.org/10.1063/1.4811483 CrossRefGoogle Scholar
  16. 16.
    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, C.S. Hwang, The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl. Phys. Lett. 104(7), 72901 (2014).  https://doi.org/10.1063/1.4866008 CrossRefGoogle Scholar
  17. 17.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Jeon, T. Moon, C.S. Hwang, Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on TiN bottom and TiN or RuO2 top electrodes. Phys. Status Solidi Rapid Res. Lett. 8(6), 532–535 (2014).  https://doi.org/10.1002/pssr.201409017 CrossRefGoogle Scholar
  18. 18.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, K.D. Kim, C.S. Hwang, Study on the degradation mechanism of the ferroelectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes. Appl. Phys. Lett. 105(7), 72902 (2014).  https://doi.org/10.1063/1.4893376 CrossRefGoogle Scholar
  19. 19.
    S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, T. Mikolajick, Incipient ferroelectricity in al-doped HfO2 thin films. Adv. Funct. Mater. 22(11), 2412–2417 (2012).  https://doi.org/10.1002/adfm.201103119 CrossRefGoogle Scholar
  20. 20.
    P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, J. Müller, Ferroelectric deep trench capacitors based on Al:HfO2 for 3D nonvolatile memory applications, in 2014 IEEE 6th International Memory Workshop (IMW), 2014, pp. 1–4.  https://doi.org/10.1109/imw.2014.6849367
  21. 21.
    J. Muller, U. Schroder, T.S. Boscke, I. Muller, U. Bottger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kucher, T. Mikolajick, L. Frey, Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110(11), 114113 (2011).  https://doi.org/10.1063/1.3667205 CrossRefGoogle Scholar
  22. 22.
    T. Olse, U. Schroder, S. Muller, A. Krause, D. Martin, A. Singh, J. Müller, M. Geidel, T. Mikolajick, Cosputtering yttrium into hafnium oxide thin films to produce ferroelectric properties. Appl. Phys. Lett. 101(8), 82905 (2012).  https://doi.org/10.1063/1.4747209 CrossRefGoogle Scholar
  23. 23.
    S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, T. Mikolajick, Ferroelectricity in Gd-doped HfO2 thin films. ECS J. Solid State Sci. Technol. 1(6), N123–N126 (2012).  https://doi.org/10.1149/2.002301jss CrossRefGoogle Scholar
  24. 24.
    T. Schenk, S. Mueller, U. Schroeder, R. Materlik, A. Kersch, M. Popovici, C. Adelmann, S. V. Elshocht, T. Mikolajick, Strontium doped hafnium oxide thin films: wide process window for ferroelectric memories, in 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2013, pp. 260–263.  https://doi.org/10.1109/essderc.2013.6818868
  25. 25.
    J. Muller, T. S. Boscke, S. Muller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T. M. Arruda, S. V. Kalinin, T. Schlosser, R. Boschke, R. van Bentum, U. Schroder, T. Mikolajick, Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories, in 2013 IEEE International Electron Devices Meeting, 2013, pp. 10.8.1–10.8.4.  https://doi.org/10.1109/iedm.2013.6724605
  26. 26.
    P. Polakowski, J. Muller, Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 106(23), 232905 (2015).  https://doi.org/10.1063/1.4922272 CrossRefGoogle Scholar
  27. 27.
    K.D. Kim, M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, Y.H. Lee, S.D. Hyun, T. Gwon, C.S. Hwang, Ferroelectricity in undoped-HfO2 thin films induced by deposition temperature control during atomic layer deposition. J. Mater. Chem. C 4(28), 6864–6872 (2016).  https://doi.org/10.1039/C6TC02003H CrossRefGoogle Scholar
  28. 28.
    A.I. Khan, U. Radhakrishna, K. Chatterjee, S. Salahuddin, D.A. Antoniadis, Negative capacitance behavior in a leaky ferroelectric. IEEE Trans. Electron Devices 63(11), 4416–4422 (2016).  https://doi.org/10.1109/TED.2016.2612656 CrossRefGoogle Scholar
  29. 29.
    M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick, C.S. Hwang, Ferroelectricity and antiferroelectricity of doped thin HfO2 -based films. Adv. Mater. 27(11), 1811–1831 (2015).  https://doi.org/10.1002/adma.201404531 CrossRefGoogle Scholar
  30. 30.
    A.I. Khan, U. Radhakrishna, S. Salahuddin, D. Antoniadis, Work function engineering for performance improvement in leaky negative capacitance FETs. IEEE Electron Device Lett. 38(9), 1335–1338 (2017).  https://doi.org/10.1109/LED.2017.2733382 CrossRefGoogle Scholar
  31. 31.
    T. Ando, N.D. Sathaye, K.V.R.M. Murali, E.A. Cartier, On the electron and hole tunneling in a HfO2 gate stack with extreme interfacial-layer scaling. IEEE Electron Device Lett. 32(7), 865–867 (2011).  https://doi.org/10.1109/LED.2011.2146751 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.PDPM-Indian Institute of Information Technology, Design and Manufacturing JabalpurJabalpurIndia

Personalised recommendations