Microstructural Characteristics of Oxide Layer Growth on Tin Whisker and Finish Surface

  • Kyung-Seob Kim
  • Jong-Chang WooEmail author
Regular Paper


The growth of oxide film on both Sn whisker and finish surfaces was observed using TEM and their crystal structures were analyzed using EELS. Only uniformly formed SnO2 structure of rutile phase was observed on the surface of Sn. In the samples stored at room temperature for 20 years, the thickness of oxide layer on finish surface (17 nm with polycrystalline structure) was thicker than that on whisker surface (6.5 nm with amorphous structure). The tin oxide growth tendency exhibited a parabolic curve with a gentle slope. However, at samples stored at 55 °C for 16 months, oxide layers consisted of 1 nm amorphous and 9 nm polycrystalline SnO2 were observed on whisker surfaces. The amorphous structure of SnO2 layer (5.5 nm) was also formed on the finish surfaces. No difference was found in the measured resistance of the Sn finish surface when the surface was etched by Ga+ ions.


Tin oxide Tin whisker Amorphous Polycrystalline Electron energy loss spectroscopy 



  1. 1.
    S.K. Zeng, K.N. Tu, Mater. Sci. Eng., R 38, 55 (2002)CrossRefGoogle Scholar
  2. 2.
    G.T. Galyon, L. Palmer, I.E.E.E. Trans, Electron. Packag. Manuf. 28, 17 (2005)CrossRefGoogle Scholar
  3. 3.
    J. Cheng, P. Vianco, J.C.M. Li, Appl. Phys. Lett. 96, 184102 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, C. Fan, C. Xu, O. Khaselev, J.A. Abys, CircuiTree 7, 70 (2004)Google Scholar
  5. 5.
    K.N. Tu, J.C.M. Li, Mater. Sci. Eng. A 409, 131 (2005)CrossRefGoogle Scholar
  6. 6.
    Y.H. Chen, Y.Y. Wang, C.C. Wan, Surf. Coatings Tech. 202, 417 (2007)CrossRefGoogle Scholar
  7. 7.
    J.W. Osenbach, J.M. DeLucca, B.D. Potteiger, A. Amin, R.L. Shook, F.A. Baiocchi, I.E.E.E. Trans, Electron. Packag. Manuf. 30, 23 (2007)CrossRefGoogle Scholar
  8. 8.
    C.C. Wei, P.C. Liu, C. Chen, J.C.B. Lee, I.P. Wang, J. Appl. Phys. 102, 043521 (2007)CrossRefGoogle Scholar
  9. 9.
    A.T. Fromhold Jr., Theory of Metal Oxidation, vol. 1 Fundamentals (North-Holland Publishing Company, New York, 1976), p. 3Google Scholar
  10. 10.
    W. Gobel, K.D. Schierbaum, Sensor. Actuat. B-Chem. 26/27, 1 (1995)Google Scholar
  11. 11.
    A. Chaturvedi, V.N. Mishra, R. Dwivedi, S.K. Srivastava, Microelectronics 30, 259 (1999)CrossRefGoogle Scholar
  12. 12.
    H. Sosiati, S. Hata, N. Kuwano, Y. Iwane, Y. Morizono, Y. Ohno, Proceeding of 20th Passive Component Symposium (CARTS EUROPE, Germany, 2006), pp. 263–269Google Scholar
  13. 13.
    K.S. Kumar, L. Reinbold, A.F. Bower, E. Chason, J. Mater. Res. 23, 2916 (2008)CrossRefGoogle Scholar
  14. 14.
    C.L. Rodekohr, G.T. Flowers, J.C. Suhling, M.J. Bozack (ed.), Proceeding of 54th IEEE Holm Conference on Electrical Contacts, (Orlando, FL, 2008), pp. 232–237Google Scholar
  15. 15.
    R.D. Hilty, N. Corman, Mater. Res. Soc. Symp. Proc. 993E, 0993-E02-02 (2007)Google Scholar
  16. 16.
    S.W. Han, M. Osterman, M.G. Pecht, I.E.E.E. Trans, Electron. Packag. Manuf. 33, 205 (2010)CrossRefGoogle Scholar
  17. 17.
    K.N. Tu, Phys. Rev. B 49, 2030 (1994)CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, C. Xu, C. Fan, J.A. Abys, A. Vysotskaya (ed.), Proceedings of IPC SMEMA Council APEX, (San Diego, CA, 2002), pp. S06-1-1–S06-1-8Google Scholar
  19. 19.
    M. Killefer et al., J. Phys. D Appl. Phys. 50, 405302 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Saitou, Int. J. Electrochem. Sci. 14, 625 (2019)CrossRefGoogle Scholar
  21. 21.
    JEDEC Standard JESD201, Released in March (2006)Google Scholar
  22. 22.
    J.B. LeBret, M.G. Norton, J. Mater. Res. 18, 585 (2003)CrossRefGoogle Scholar
  23. 23.
    S.L. Cho, J. Yu, S.K. Kang, D.Y. Shih, J. Electron. Mater. 34, 635 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Mozetic, A. Zalar, U. Cvelbar, D. Babic, Surf. Interface Anal. 36, 986 (2004)CrossRefGoogle Scholar
  25. 25.
    K. Gilleo, Area Array Packaging Materials (McGraw-Hill, New York, 2003), p. 53Google Scholar
  26. 26.
    H. Sosiati, N. Hirokado, N. Kuwano, Y. Ohno, Proceeding of 10th Electronics Packaging Technology Conference, (Singapore, 2008), p. 1054Google Scholar
  27. 27.
    M.S. Moreno, R.F. Egerton, P.A. Midgley, Phys. Rev. B 69, 233304 (2004)CrossRefGoogle Scholar
  28. 28.
    W.C. Ellis, Trans. Met Soc. AIM 236, 872 (1966)Google Scholar
  29. 29.
    R.B. Morris, W. Bonfield, Scr.Metall. 8, 231 (1974)CrossRefGoogle Scholar
  30. 30.
    B.Z. Lee, D.N. Lee, Acta Mater. 46, 3701 (1997)CrossRefGoogle Scholar
  31. 31.
    T.T.G. Sheng et al., J. Appl. Phys. 92, 64 (2002)CrossRefGoogle Scholar
  32. 32.
    S.H. Liu et al., J. Appl. Phys. 95, 7742 (2004)CrossRefGoogle Scholar
  33. 33.
    J. Cheng et al., Electronics Components Technology Conference (2008), pp. 472–477Google Scholar
  34. 34.
    T.C. Chiu, K.L. Lin, Scr. Mater. 60, 1121 (2009)CrossRefGoogle Scholar
  35. 35.
    L. Juchuan et al., J. Power. Sour. 196, 1474 (2011)CrossRefGoogle Scholar
  36. 36.
    B. Illés, A. Skwarek et al., Surf. Coat. Technol. 311, 216 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Kaplan, I. Rusman, R.L. Boxman, S. Goldsmith, M. Natan, E. Ben-Jacob, Thin Solid Films 355, 290 (1996)Google Scholar
  38. 38.
    M. Sobiech, U. Welzel, et al., Proceeding of 57th Electronics Components Technology Conference (Reno NV, 2007), p. 192Google Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Semiconductor SystemYeoju Institute of TechnologyYeojuRepublic of Korea
  2. 2.Department of Semiconductor and AutomationDaeduk UniversityDaejeonRepublic of Korea

Personalised recommendations