Structural, Electrical and Optical Properties for (Polyvinyl Alcohol–Polyethylene Oxide–Magnesium Oxide) Nanocomposites for Optoelectronics Applications

  • Qayssar M. Jebur
  • Ahmed HashimEmail author
  • Majeed A. Habeeb
Regular Paper


Preparation of polyvinyl alcohol (PVA)–polyethylene oxide (PEO)–magnesium oxide (MgO) nanocomposites and studying their structural, AC electrical and optical properties for dielectric and optoelectronic applications have been investigated. The nanocomposites have been fabricated with different concentrations of (PVA–PEO) blend and MgO nanoparticles. The experimental results showed that the dielectric constant, dielectric loss and AC electrical conductivity of (PVA–PEO) blend are increased with the increase in MgO nanoparticles concentrations. The dielectric constant and dielectric loss of (PVA–PEO) blend are decreased while the AC electrical conductivity increases with the increase in frequency. The optical measurements are showed that the absorbance of (PVA–PEO–MgO) nanocomposites is increased with increasing of the magnesium oxide nanoparticles concentrations. The indirect energy gap (Eg) of (PVA–PEO) blend decreases with an increase inconcentrations of magnesium oxide nanoparticles. The optical constants as absorption coefficient, extinction coefficient, refractive index, real and imaginary dielectric constants of nanocomposites are variation with increasing of the magnesium oxide nanoparticles weight percentages.


Polymeric blends Dielectric properties Magnesium oxide Energy gap Polyethylene oxide 



  1. 1.
    H. Kasım, M. Yazıcı, Electrical properties of graphene/natural rubber nanocomposites coated nylon fabric under cyclic loading. Period. Polytech. Chem. Eng. 63(1), 160–169 (2019). CrossRefGoogle Scholar
  2. 2.
    H.R. Hiziroglu, I.E. Shkolnik, Electrical characteristics of polypropylene mixed with natural nanoclay. Polymers (2018). Google Scholar
  3. 3.
    A. Hashim, M.A. Habeeb, A. Hadi, Synthesis of novel polyvinyl alcohol–starch–copper oxide nanocomposites for humidity sensors applications with different temperatures. Sens. Lett. 15(9), 758–761 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Ahmed, H.M. Abduljalil, A. Hashim, Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors. Trans. Electr. Electron. Mater. (2019). Google Scholar
  5. 5.
    H. Ahmed, H.M. Abduljalil, A. Hashim, Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electr. Electron. Mater. (2019). Google Scholar
  6. 6.
    Y. Gong, W. Zhou, Z. Wang, L. Xu, Y. Kou, H. Cai, X. Liu, Q. Chen, Z.-M. Dang, Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA–Fe coordination complexes as an interface layer. J. Mater. Sci. Technol. 34, 2415–2423 (2018). CrossRefGoogle Scholar
  7. 7.
    R. Nangia, N.K. Shukla, A. Sharma, Preparation, structural and dielectric properties of solution grown polyvinyl alcohol (PVA) film. In: IOP Conference Series: Materials Science and Engineering, vol. 225 (2017)Google Scholar
  8. 8.
    A. Hashim, M.A. Habeeb, Structural and optical properties of (biopolymer blend-metal oxide) bionanocomposites for humidity sensors. J. Bionanosci. 12(5), 660–663 (2018)CrossRefGoogle Scholar
  9. 9.
    A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci. Mater. Electron. 29, 11598–11604 (2018). CrossRefGoogle Scholar
  10. 10.
    B.H. Rabee, A. Hashim, Synthesis and characterization of carbon nanotubes-polystyrene composites. Eur. J. Sci. Res. 60(2), 247–254 (2011). Google Scholar
  11. 11.
    M.A. Habbeb, A. Hashim, A.R.K. AbidAli, The dielectric properties for (PMMA-LiF) composite. Eur. J. Sci. Res. 61(3), 367–371 (2011)Google Scholar
  12. 12.
    B.B. Bohara, A. Kassu, J. Brinkley, A.K. Batra, M.D. Aggarwal, Dielectric properties of lead magnesium niobate–lead titanate/cement nanocomposites. Adv. Sci. Eng. Med. 10, 1260–1264 (2018)CrossRefGoogle Scholar
  13. 13.
    F.A. Jasim, F. Lafta, A. Hashim, M. Ali, A.G. Hadi, Characterization of palm fronds-polystyrene composites. J. Eng. Appl. Sci. 8(5), 140–142 (2013)Google Scholar
  14. 14.
    F.A. Jasim, A. Hashim, A.G. Hadi, F. Lafta, S.R. Salman, H. Ahmed, Preparation of (pomegranate peel-polystyrene) composites and study their optical properties. Res. J. Appl. Sci. 8(9), 439–441 (2013)Google Scholar
  15. 15.
    F.L. Rashid, A. Hashim, M.A. Habeeb, S.R. Salman, H. Ahmed, Preparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical properties. J. Eng. Appl. Sci. 8(5), 137–139 (2013)Google Scholar
  16. 16.
    A.I. Abbo, H.S. Abdulla, Optical and electrical properties of thin films of polyaniline and polypyrrole. Int. J. Electrochem. Sci. 7, 10666–10678 (2012)Google Scholar
  17. 17.
    A. Hashim, A. Jassim, Novel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J. Bionanosci. 12, 170–176 (2018). CrossRefGoogle Scholar
  18. 18.
    A.M. El Sayed, Synthesis and controlling the optical and dielectric properties of CMC/PVA blendvia γ-rays irradiation. J. Nucl. Instrum. Methods Phys Res. B Beam Interact. Mater. Atoms 321, 41–48 (2014). CrossRefGoogle Scholar
  19. 19.
    H. Bai, Y. Li, W. Wang, G. Chen, O.J. Rojas, W. Dong, X. Liu, Interpenetrated polymer networks in composites with polyvinyl alcohol, micro- and nano-fibrillated cellulose (M/NFC) and polyhema to develop packaging materials. J. Cellulose 22, 3877–3894 (2015). CrossRefGoogle Scholar
  20. 20.
    B.Y. Lee, Y.C. Kim, Effect of graphene oxide (GO) dispersion on basic properties of polycarbonate/GO composites. Int. J. Digit. Content Technol. Appl. (JDCTA) 7(11), 287–297 (2013)CrossRefGoogle Scholar
  21. 21.
    L.A. Abdelwahab, A.E. Ali, R.A. Zaghlool, N.A. Mohsen, Dielectric properties, impedance analysis, and electrical conductivity of Ag doped radiation grafted polypropylene. Egypt. J. Radiat. Sci. Appl. 30(1), 95–107 (2017)CrossRefGoogle Scholar
  22. 22.
    M.A. Habeeb, A. Hashim, A. Hadi, Fabrication of new nanocomposites: CMC–PAA–PbO2 nanoparticles for piezoelectric sensors and gamma radiation shielding applications. Sens. Lett. 15(9), 785–790 (2017)CrossRefGoogle Scholar
  23. 23.
    A. Hashim, M.A. Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. (2019). Google Scholar
  24. 24.
    A. Hashim, M.A. Habeeb, A. Hadi, Q.M. Jebur, W. Hadi, Fabrication of novel (PVA–PEG–CMC–Fe3O4) magnetic nanocomposites for piezoelectric applications. Sens. Lett. 15(12), 998–1002 (2017)CrossRefGoogle Scholar
  25. 25.
    Z. Al-Ramadhan, A. J. K. Algidsawi, A. Hashim, The D.C Electrical Properties of (PVC-Al2O3) Composites, AIP Conf. Proc. (2011). Google Scholar
  26. 26.
    A.F. Mansour, S.F. Mansour, M.A. Abdo, Improvement structural and optical properties of ZnO/PVA nanocomposites. J. Appl. Phys. 7, 60–69 (2015)Google Scholar
  27. 27.
    I.Y. Jeon, J.B. Baek, Nanocomposites derived from polymers and inorganic nanoparticles. J. Mater. 3, 3654–3674 (2010)CrossRefGoogle Scholar
  28. 28.
    T.K. Kundu, N. Karak, P. Barik, S. Saha, Optical properties of Zno nanoparticles prepared by chemical method using poly (vinylalcohol) (PVA) as capping agent. Int. J. Soft Comput. Eng. (IJSCE) 1, 19–24 (2011)Google Scholar
  29. 29.
    J.L. Chau, Y.M. Lin, A.-K. Li, W.-F. Su, K.S. Chang, H.S. Hsu, T.L. Li, Transparent high refractive index nanocomposite thin films. J. Mater. Lett. 61, 2908–2910 (2007)CrossRefGoogle Scholar
  30. 30.
    M.M. Abutalib, Effect of additive concentration and X-ray irradiation on the thermal and color properties of polyvinyl alcohol. J. Life Sci. 11(9), 512–517 (2014)Google Scholar
  31. 31.
    H.K. Chitte, N.V. Bhat, N.S. Karmakar, D.C. Kothari, GN Shinde,” Synthesis and characterization of polymeric composites embeded with silver nanoparticles. World J. Nano Sci. Eng. 2, 19–24 (2012)CrossRefGoogle Scholar
  32. 32.
    K. Vimala, Y.M. Mohan, K. Varaprasad, N.N. Redd, S.R. Neppalli, S. Naidu, K.M. Raju, Fabrication of curcumin encapsulatedchitosan-PVA silver nanocomposite films for improved antimicrobial activity. J. Biomater. Nanobiotechnol. 2, 55–64 (2012)CrossRefGoogle Scholar
  33. 33.
    A.J. Kadham, D. Hassan, N. Mohammad, A. Hashim, Fabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applications. Bull. Electr. Eng. Inf. 7(1), 28–34 (2018). Google Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Ministry of Education, IraqBaghdadIraq
  2. 2.Department of Physics, College of Education for Pure SciencesUniversity of BabylonBabylonIraq

Personalised recommendations