Amorphous Si–Zn–Sn–O Thin Film Transistor with In–Si–O as Transparent Conducting Electrodes

  • Jin Young Hwang
  • Sang Yeol LeeEmail author
Regular Paper


We revealed a novel method to fabricate amorphous silicon-zinc-tin-oxide (a-SZTO) thin-film transistors (TFTs) has been reported with transparent Indium–silicon–oxide (ISO) source/drain (S/D) electrodes. The presented TFTs exhibited a high field-effect mobility of 14.65 cm2/Vs, a threshold voltage of 2.87 V, and a low subthreshold swing of 0.39 V/decade. It is suggested that the small work function of ISO (4.49 eV) compared to that of a-SZTO (4.53 eV) induces an ohmic contact at the ISO/SZTO junction, which makes it possible the effective injection of electrons from oxide materials into the a-SZTO semiconductor. Determine the stability of a-SZTO TFTs under Negative bias temperature stress (NBTS) was measured ∆VTH = 1.21 V at 333 K, and − 20 V for 7200 s.


Amorphous oxide semiconductor TCE NBTS Transmittance 



This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B06033837) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No.20172010104940). In addition, this research was partially supported by the Cheongju University Research Scholarship Grants in 2019.


  1. 1.
    R.L. Hoffman, B.J. Norris, J.F. Wager, Appl. Phys. Lett. 82, 733 (2003)CrossRefGoogle Scholar
  2. 2.
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)CrossRefGoogle Scholar
  3. 3.
    P.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes, Appl. Phys. Lett. 82, 1117 (2003)CrossRefGoogle Scholar
  4. 4.
    J.S. Park, T.W. Kim, D. Stryahilev, J.S. Lee, S.G. An, Y.S. Pyo, D.B. Lee, Y.G. Mo, D.U. Jin, H.K. Chung, Appl. Phys. Lett. 95, 13503 (2009)CrossRefGoogle Scholar
  5. 5.
    D. Karnaushenko, N. Munzenrieder, D.D. Karnaushenko, B. Koch, A.K. Meyer, S. Baunack, L. Petti, G. Troster, D. Makarov, O.G. Schmidt, Adv. Mater. 27, 6797–6805 (2015)CrossRefGoogle Scholar
  6. 6.
    A.K. Tripathi, E.C.P. Smits, J.B.P.H. van der Putten, M. van Neer, K. Myny, M. Nag, S. Steudel, P. Vicca, K. O’Neill, E. van Veenendaal, J. Genoe, P. Heremans, G.H. Gelinck, Appl. Phys. Lett. 98, 162102 (2011)CrossRefGoogle Scholar
  7. 7.
    D.H. Kim, M.R. Park, H.J. Lee, G.H. Lee, Appl. Surf. Sci. 253, 409–411 (2006)CrossRefGoogle Scholar
  8. 8.
    X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83, 1875 (2003)CrossRefGoogle Scholar
  9. 9.
    M. Murugesan, D. Arjunraj, J. Mayandi, V. Venkatachalapathy, J.M. Pearce, Mater. Lett. 222, 50–53 (2018)CrossRefGoogle Scholar
  10. 10.
    B. Li, C.Y. Han, P.T. Lai, W.M. Tang, Thin Solid Films 667, 28–33 (2018)CrossRefGoogle Scholar
  11. 11.
    S.Y. Lee, Transactions on Electrical and Electronic Materials 16, 139 (2015)CrossRefGoogle Scholar
  12. 12.
    C.P.T. Nguyen, T.T. Trinh, J. Raja, A.H.T. Le, Y.J. Lee, V.A. Dao, J. Yi, Mater. Sci. Semicond. Process. 39, 649–653 (2015)CrossRefGoogle Scholar
  13. 13.
    P. Barquinha, A.M. Vila, G. Goncalves, L. Pereira, R. Martins, J.R. Morante, E. Fortunato, I.E.E.E. Trans, Electron Dev. 55, 4 (2008)CrossRefGoogle Scholar
  14. 14.
    K.J. Chang, W.T. Chen, W.C. Chang, W.P. Chen, C.C. Nien, T.H. Shih, H.H. Lu, Y.H. Lin, S.I.D. Symp, Dig. Tech. Pap. 46, 1203 (2015)CrossRefGoogle Scholar
  15. 15.
    C.Y. Wu, C.J. Lin, C.Y. Huang, H.L. Chen, Y.C. Kao, M.C. Hung, W.T. Lin, J.J. Chang. P.L. Chen, C.H. Chen, SID Symp. Dig. Tech. Pap. 41, 1298 (2010)Google Scholar
  16. 16.
    B.H. Lee, S.Y. Lee, Trans. Electr. Electron. Mater. 18, 51–54 (2017)CrossRefGoogle Scholar
  17. 17.
    M.Y. Tsai, T.C. Chang, A.K. Chu, T.Y. Hsieh, T.C. Chen, K.Y. Lin, W.W. Tsai, W.J. Chiang, J.Y. Yan, Appl. Phys. Lett. 103, 012101 (2013)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Semiconductor EngineeringCheongju UniversityCheongjuSouth Korea

Personalised recommendations