Advertisement

Structural, Optical and Electronic Properties of Novel (PVA–MgO)/SiC Nanocomposites Films for Humidity Sensors

  • Hind Ahmed
  • Hayder M. Abduljalil
  • Ahmed HashimEmail author
Regular Paper
  • 6 Downloads

Abstract

The polyvinyl alcohol (PVA) and magnesium oxide (MgO) nanocomposites and (PVA–MgO) nanocomposites doped by Silicon carbide (SiC) nanoparticles have been fabricated with different concentrations of Silicon carbide and (PVA–MgO) nanocomposites. Both experimental and theoretical studies on structural and optical properties of novel (PVA–MgO–SiC) nanocomposites for humidity sensors were examined for first time with low cost, flexible and high sensitivity. The (PVA–MgO–SiC) nanocomposites were intended with various concentrations of Silicon carbide nanoparticles. The experimental results of optical properties for (PVA–MgO–SiC) nanocomposites indicated that the absorbance, absorption coefficient, extinction coefficient, refractive index, imaginary and real dielectric constants and optical conductivity of (PVA–MgO) nanocomposites increase with an increase in Silicon carbide nanoparticles concentrations. The absorbance increases from 0.432 to 2.55 a.u while the transmittance decreases from 0.779 to 0.230 a.u. The energy gap decreases from 4.4 to 2.1 eV. The energy gap theoretically decreases from 7.07 to 3.04 eV. The experimental results of novel (PVA–MgO–SiC) nanocomposites applications showed that (PVA–MgO–SiC) nanocomposites have high sensitivity for relative humidity. The results obtained were compared with theoretic results obtained by using Gaussian 09 program and Gaussian view 5.0.8 program and using density functional theory (DFT) at B3LYP level with 6-31G basis set.

Keywords

Humidity Sensor Nanocomposites Optical properties FTIR DFT 

Notes

Acknowledgements

The authors thank the University of Babylon–Iraq (College of Education for Pure Sciences, Department of Physics and College of Science, Department of Physics).

References

  1. 1.
    A. Hashim, A. Hadi, Synthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor application. Sens. Lett. 15(10), 858–861 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Ju et al., Dielectric properties of nanosilica/low-density polyethylene composites: the surface chemistry of nanoparticles and deep traps induced by nanoparticles. Exp. Polym. Lett. 8(9), 682 (2014)CrossRefGoogle Scholar
  3. 3.
    I.R. Agool, K.J. Kadhim, A. Hashim, Synthesis of (PVA–PEG–PVP–ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plast. Technol. 21(2), 444–453 (2017)CrossRefGoogle Scholar
  4. 4.
    P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)CrossRefGoogle Scholar
  5. 5.
    D. Ham, J. Lee, Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2(4), 873–899 (2009)CrossRefGoogle Scholar
  6. 6.
    J.S. Lee, T.H. Hyun, Metal carbides, in Encyclopedia of Catalysis, 1st edn., ed. by I.T. Horvath (Wiley, New York, 2003)Google Scholar
  7. 7.
    S. Gandhi, P. Abiramipriya, N. Pooja, J.J.L. Jeyakumari, A.Y. Arasi, V. Dhanalakshmi, R. Anbarasan, Synthesis and characterizations of nano sized MgO and its nano composite with poly(vinyl alcohol). J. Non-Cryst. Solids 357(1), 181–185 (2011)CrossRefGoogle Scholar
  8. 8.
    K. Karthikeyan et al., Thermal properties and morphology of MgO–PVA nanocomposite film. J. Nanostruct. Polym. Nanocompos. 5(4), 83–88 (2009)Google Scholar
  9. 9.
    Z.-X. Tang, B.-F. Lv, MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. 31(3), 591–601 (2014)CrossRefGoogle Scholar
  10. 10.
    F.L. Rashid et al., Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. J. Pharm. Phytopharm. Res. 8(1), 46–56 (2018)Google Scholar
  11. 11.
    D.K.M. Al-Nasrawy et al., The effect of SiC–particles–reinforced MgO composites. J. Kufa-Phys. 3(1), 75–81 (2011)Google Scholar
  12. 12.
    D.C. Young, A Practical Guide for Applying Techniques to Real-World Problems (2001)Google Scholar
  13. 13.
    Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds (CRC Press, Boca Raton, 2002)CrossRefGoogle Scholar
  14. 14.
    P. Atkins, J. De Paula, Physical Chemistry for the Life Sciences (Oxford University Press, Oxford, 2011)Google Scholar
  15. 15.
    C.C. DeMerlis, D.R. Schoneker, Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem. Toxicol. 41(3), 319–326 (2003)CrossRefGoogle Scholar
  16. 16.
    I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA–PEG–PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. 21(2), 397 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Hadi, A. Hashim, Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukr. J. Phys. 62(12), 1044 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci. Mater. Electron. 29, 11598–11604 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym. Mater. 28(4), 1394–1401 (2018)CrossRefGoogle Scholar
  20. 20.
    A.P. Indolia, M.S. Gaur, Optical properties of solution grown PVDF ZnO nanocomposite thin films. J. Polym. Res. 20(1), 43 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Phukan, D. Saikia, Optical and structural investigation of CdSe quantum dots dispersed in PVA matrix and photovoltaic applications. Int. J. Photoenergy 2013, 728280 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Salman, N. Bakr, M.H. Mahmood, Preparation and study of some optical properties of (PVA-Ni (CH3COO)2) composites. Int. J. Curr. Res. 6(11), 9638–9643 (2014)Google Scholar
  23. 23.
    M.R. Islam, J. Podder, Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 44(3), 286–292 (2009)CrossRefGoogle Scholar
  24. 24.
    C.J. Mathai et al., Effect of iodine doping on the bandgap of plasma polymerized aniline thin films. J. Phys. D Appl. Phys. 35(17), 2206 (2002)CrossRefGoogle Scholar
  25. 25.
    E. Kavitha, N. Sundaraganesan, S. Sebastian, Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of 4-nitroaniline by density functional method (2010)‏Google Scholar
  26. 26.
    Q. Fan et al., Mechanical and electronic properties of Ca1−xMgxO alloys. Mater. Sci. Semicond. Process. 40, 676–684 (2015)CrossRefGoogle Scholar
  27. 27.
    A.M. El Sayed, W.M. Morsi, α-Fe2O3/(PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J. Mater. Sci. 49(15), 5378–5387 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Singh Rathore et al., Optical and dielectric properties of 55 MeV carbon beam-irradiated polycarbonate films. Radiat. Effects Defects Solids 167(2), 131–140 (2012)CrossRefGoogle Scholar
  29. 29.
    M.A.M. Khan, M. Zulfequar, M. Husain, Optical investigation of a-Se100−xBix alloys. Opt. Mater. 22(1), 21–29 (2003)CrossRefGoogle Scholar
  30. 30.
    G. Attia, M.F.H. Abd El-Kader, Structural, optical and thermal characterization of PVA/2HEC polyblend films. Int. J. Electrochem. Sci. 8, 5672–5687 (2013)Google Scholar
  31. 31.
    A. Hashim, A. Jassim, Novel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J. Bionanosci. 12, 170 (2018)CrossRefGoogle Scholar
  32. 32.
    A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. 62(11), 978 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Hashim, A. Jassim, Novel of (PVA-ST-PbO2) Bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens. Lett. 15(12), 1003 (2017)CrossRefGoogle Scholar
  34. 34.
    N.G. Imam, M.B. Mohamed, Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra. J. Mol. Struct. 1105, 80–86 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Hashim, I.R. Agool, K.J. Kadhim, Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci. Mater. Electron. 29(12), 10369–10394 (2018)CrossRefGoogle Scholar
  36. 36.
    A.J. Kadham, D. Hassan, N. Mohammad, A. Hashim, Fabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applications. Bull. Electr. Eng. Inform. 7(1), 28 (2018)Google Scholar
  37. 37.
    M. Joshi, R.P. Singh, Cross linking polymers (PVA & PEG) with TiO2 nanoparticles for humidity sensing. Sens. Transducers 110(11), 105 (2009)Google Scholar
  38. 38.
    R. Srivastava, Effect of poly ethylene glycolon moisture sensing of copper ferrite nanocomposite. Am. J. Sens. Technol. 3(1), 1–4 (2015)Google Scholar
  39. 39.
    A. Hind, H.M. Abduljalil, A. Hashim, Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electr. Electron. Mater. (2019).  https://doi.org/10.1007/s42341-019-00100-2 Google Scholar
  40. 40.
    A. Hashim, M.A. Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. (2019).  https://doi.org/10.1007/s42341-018-0081-1 Google Scholar
  41. 41.
    N.A. Elmarzugi et al., Spectroscopic characterization of PEG-DNA biocomplexes by FTIR. J. Appl. Pharm. Sci. 4(8), 6 (2014)Google Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Physics, College of Education for Pure SciencesUniversity of BabylonHillahIraq
  2. 2.Department of Physics, College of ScienceUniversity of BabylonHillahIraq

Personalised recommendations