Advertisement

Dependency of Si Content on the Performance of Amorphous SiZnSnO Thin Film Transistor Based Logic Circuits for Next-Generation Integrated Circuits

  • Byeong Hyeon Lee
  • Sangsig Kim
  • Sang Yeol LeeEmail author
Regular Paper
  • 11 Downloads

Abstract

On the ZTO system, Si was found to be considered as an oxygen vacancy suppressor due to Si atom having high bonding strength with oxygen. The a-SZTO thin films fabricated with thin-film transistors showed a tendency of decreasing electrical properties as the Si content increased. In addition, various resistances, such as total resistance (Rt), contact resistance (Rc), and sheet resistance (Rsh) depending on Si content were analyzed using transmission line method. It was also found that Rsh was increased due to suppressing oxygen vacancies by Si atom. Threshold voltage can be controlled through simple adjustment of Si content and a NOT logic circuit is fabricated through this. In the fabricated two NOT logic circuits, high voltage gain of 11.86 and 9.23 was obtained at VDD = 5 V, respectively. In addition, we found that even more complex NAND and NOR logic circuits work just like truth tables. Therefore, logic circuits fabricated according to simple Si content can be applied to next generation integrated circuits.

Keywords

Thin film transistor Logic circuit Amorphous oxide semiconductor Transmission line method 

Notes

References

  1. 1.
    H. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004)CrossRefGoogle Scholar
  2. 2.
    H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kunomi, K. Nomura, T. Kamiya, H. Hosono, High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 89, 112123 (2006)CrossRefGoogle Scholar
  3. 3.
    K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 45, 4303–4308 (2006)CrossRefGoogle Scholar
  4. 4.
    J. Bang, S. Matsuishi, H. Hosono, Hydrogen anion and subgap states in amorphous In–Ga–Zn–O thin films for TFT applications. Appl. Phys. Lett. 110, 232105 (2017)CrossRefGoogle Scholar
  5. 5.
    E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S.-H. Ko Park, C.-S. Hwang, R. Martins, Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing. Appl. Phys. Lett. 97, 052105 (2010)CrossRefGoogle Scholar
  6. 6.
    P.-C. Chen, Y.-C. Chiu, Z.-W. Zheng, C.-H. Cheng, Y.-H. Wu, Influence of plasma fluorination on p-type channel tin-oxide thin film transistors. J. Alloys Compd. 707, 161–166 (2017)CrossRefGoogle Scholar
  7. 7.
    C.-W. Dhananjay, C.-W. Chu, M.-C. Ou, Z.-Y. Wu, K.-C. Ho, S.-W. Lee, Complementary inverter circuits based on p-SnO2 and n-In2O3 thin film transistors. Appl. Phys. Lett. 92, 232103 (2008)CrossRefGoogle Scholar
  8. 8.
    J.-H. Lee, Y.-J. Choi, C.-Y. Jeong, C.-W. Lee, H.-I. Kwon, Temperature-dependent electrical instability of p-type SnO thin-film transistors. J. Vac. Sci. Technol. B 34, 041210 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Kim, M.L. Geier, M.C. Hersam, A. Dodabalapur, Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors. Sci. Rep. 6, 39627 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Jacob, S. Abdinia, M. Benwadih, J. Bablet, I. Chartier, R. Gwoziecki, E. Cantatore, A.H.M. van Roermund, L. Addiona, F. Tramontana, G. Maiellaro, L. Mariucci, M. Rapisarda, G. Palmisano, R. Coppard, High performance printed N and P-type OTFTs enabling digital and analog complementary circuits on flexible plastic substrate. Solid-State Electron. 84, 167–178 (2013)CrossRefGoogle Scholar
  11. 11.
    J.H. Ryu, G.-W. Baek, S.J. Yu, S.G. Seo, S.H. Jin, Photosensitive full-swing multi-layer MoS2 inverters with light shielding layers. IEEE Electron Dev. Lett. 38, 67–70 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Han, S.Y. Lee, High performance of full swing logic inverter using all n-types amorphous ZnSnO and SiZnSnO thin film transistors. Appl. Phys. Lett. 106, 212104 (2015)CrossRefGoogle Scholar
  13. 13.
    P.C. Debnath, S.Y. Lee, Full swing logic inverter with amorphous SiInZnO and GaInZnO thin film transistors. Appl. Phys. Lett. 101, 092103 (2012)CrossRefGoogle Scholar
  14. 14.
    D.-Y. Cho, Y.-H. Shin, Y.-J. Noh, S.-I. Na, K.-B. Chung, H.-K. Kim, Roll-to-roll sputtered Si-doped In2O3/Ag/Si-doped In2O3 multilayer as flexible and transparent anodes for flexible organic solar cells. J. Vac. Sci. Technol. A 33, 02150 (2015)CrossRefGoogle Scholar
  15. 15.
    H.M. Lee, S.B. Kang, K.B. Chung, H.-K. Kim, Transparent and flexible amorphous In–Si–O films for flexible organic solar cell. Appl. Phys. Lett. 102, 021914 (2013)CrossRefGoogle Scholar
  16. 16.
    B.H. Lee, D.-Y. Lee, A. Sohn, S. Park, D.-W. Kim, S.Y. Lee, Direct investigation on energy bandgap of Si added ZnSnO system for stability enhancement by X-ray photoelectron spectroscopy. J. Alloys Compd. 715, 9–15 (2017)CrossRefGoogle Scholar
  17. 17.
    B. Kim, S.Y. Lee, Effect of annealing temperature on the electrical performance of SiZnSnO thin film transistors fabricated by radio frequency magnetron sputtering. Trans. Electr. Electron. Mater. 18, 55 (2017)CrossRefGoogle Scholar
  18. 18.
    J.Y. Choi, K. Heo, K.-S. Cho, S.W. Hwang, S. Kim, S.Y. Lee, Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration. Sci. Rep. 7, 36504 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Specific contact resistance between amorphous oxide semiconductor In–Ga–Zn–O and metallic electrodes. Thin Solid Films 516, 5899–5902 (2008)CrossRefGoogle Scholar
  20. 20.
    B.H. Lee, S. Han, S.Y. Lee, Investigation on the variation of channel resistance and contact resistance of SiZnSnO semiconductor depending on Si contents using transmission line method. Solid-State Electron. 139, 15–20 (2018)CrossRefGoogle Scholar
  21. 21.
    X. He, W. Chow, F. Liu, B.K. Tay, Z. Liu, MoS2/Rubrene van der waals heterostructure: toward ambipolar field-effect transistors and inverter circuits. Small 13, 1602558 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Kwon, S. Kyung, S. Yoon, J.-J. Kim, S. Jung, Solution-processed vertically stacked complementary organic circuits with inkjet-printed routing. Adv. Sci. 3, 1500439 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Han, S.Y. Lee, Full swing depletion-load inverter with amorphous SiZnSnO thin film transistors. Phys. Stat. Sol. (a) 214, 1–5 (2016)Google Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Microdevice EngineeringKorea UniversitySeoulKorea
  2. 2.Department of Semiconductor EngineeringCheongju UniversityCheongjuKorea
  3. 3.Research Institute of Advanced Semiconductor Convergence Technology (RIASCT)Cheongju UniversityCheongjuKorea

Personalised recommendations