Advertisement

Effect of Hydrogen Gas Conditions on the Structural, Optical, and Electronic Features of nc-Si:H Thin Films

  • Jae-Hyun Shim
  • Ju-Han Kim
  • Nam-Hee ChoEmail author
Regular Paper
  • 11 Downloads

Abstract

Hydrogenated nanocrystalline Si (nc-Si: H) films were prepared by plasma enhanced chemical vapor deposition using SiH4/H2 gas. The Si nanocrystallites of the films consisted of Si–Hn (n = 1, 2, 3) bonds. The relative fraction of the Si–H bonds affected the size and volume fraction of the crystallites. Hydrogen radicals are essential for the formation of Si nanocrystallites. The Si nanocrystallite size increased from ~ 2.0 to ~ 3.0 nm with an increase in the H2 flow rate from 60 to 90 sccm. At the H2 flow rate of 90 sccm, the film became completely polymeric consisting mainly of Si–H-type bonds.

Keywords

Silicon Plasma enhanced chemical vapor deposition Photoluminescence Nanostructure Nanocrystallite Chemical bonding 

Notes

References

  1. 1.
    G. Cicala, P. Capezzuto, G. Bruno, Thin Solid Films 337, 59 (1999)CrossRefGoogle Scholar
  2. 2.
    Y. Chen, S. Wagner, Appl. Phys. Lett. 75, 1125 (1999)CrossRefGoogle Scholar
  3. 3.
    Y. Yuan, W. Zhao, J. Ma, Z. Yang, W. Li, K. Zhang, Surf. Coat. Technol. 320, 362 (2017)CrossRefGoogle Scholar
  4. 4.
    S.W. Park, E.C. Cho, D.Y. Song, G. Conibeer, M.A. Green, Sol. Energy. Mater. Sol. Cell 93, 684 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science 285, 692 (1999)CrossRefGoogle Scholar
  6. 6.
    Y. Yu, G. Fan, A. Fermi, R. Mazzaro, V. Morandi, P. Ceroni, D.-M. Smilgies, B.A. Korgel, J. Phys. Chem. C 121, 23240 (2017)CrossRefGoogle Scholar
  7. 7.
    B. von Roedern, L. Ley, M. Cardona, Phys. Rev. Lett. 39, 1576 (1977)CrossRefGoogle Scholar
  8. 8.
    U.K. Das, P. Chaudhuri, Chem. Phys. Lett. 298, 211 (1998)CrossRefGoogle Scholar
  9. 9.
    S. Oda, Adv. Colloid Interface. 71, 31 (1997)CrossRefGoogle Scholar
  10. 10.
    W. Weia, G. Xub, J. Wang, T. Wang, Vacuum 81, 656 (2007)CrossRefGoogle Scholar
  11. 11.
    S. Veprek, F.A. Sarott, Z. Iqbal, Phys. Rev. B 36, 3344 (1987)CrossRefGoogle Scholar
  12. 12.
    Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, G.Y. Hu, J. Appl. Phys. 75, 797 (1994)CrossRefGoogle Scholar
  13. 13.
    S. Veprek, Z. Iqbal, F.A. Sarott, Philos. Mag. B 45, 137 (1982)CrossRefGoogle Scholar
  14. 14.
    X.L. Wu, G.G. Siu, S. Tong, X.N. Liu, F. Yan, S.S. Jiang, D. Feng, Appl. Phys. Lett. 69, 523 (1996)CrossRefGoogle Scholar
  15. 15.
    D. Beeman, R. Tsu, M.F. Tporpe, Phys. Rev. B 32, 874 (1985)CrossRefGoogle Scholar
  16. 16.
    M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556 (1977)CrossRefGoogle Scholar
  17. 17.
    F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perriere, E. Fogarassy, A. Slaoui, M. Froment, Phys. Rev. B 37, 6468 (1988)CrossRefGoogle Scholar
  18. 18.
    J.-H. Shim, S.-I. Im, N.-H. Cho, Appl. Sur. Sci. 234, 268 (2004)CrossRefGoogle Scholar
  19. 19.
    H.-S. Kwack, Y. Sun, Y.-H. Cho, N.-M. Park, S.-J. Park, Appl. Phys. Lett. 83, 2901 (2003)CrossRefGoogle Scholar
  20. 20.
    P. Mishra, K.P. Jain, Mater. Sci. Eng., B 95, 202 (2002)CrossRefGoogle Scholar
  21. 21.
    A.G. Cullis, L.T. Canham, Nature 353, 335 (1991)CrossRefGoogle Scholar
  22. 22.
    A.S. Kavasoglu, N. Kavasoglu, A.O. Kodolbas, O. Birgi, O. Oktu, S. Oktik, Microelectron. Eng. 87(2), 108 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Advanced Materials and Energy EngineeringDongshin UniversityNajuRepublic of Korea
  2. 2.Department of Materials Science and EngineeringInha UniversityIncheonRepublic of Korea

Personalised recommendations