Analysis of Structural, Optical and Electronic Properties of Polymeric Nanocomposites/Silicon Carbide for Humidity Sensors

  • Hind Ahmed
  • Hayder M. Abduljalil
  • Ahmed HashimEmail author
Regular Paper


The nanocomposites are really promising for industrial, environmental and medical applications. In this work, new types of nanocomposites have been prepared from (PVA–TiO2) nanocomposites doped by SiC nanoparticles for humidity sensor with high sensitivity, flexible, high corrosion resistance and low cost. The experimental and theoretical studies on structural and optical properties of (PVA–TiO2–SiC) nanocomposites have been investigated. The optical microscope and FTIR studies were examined. The optical properties of nanocomposites were examined in wavelength range (220–800) nm. The results showed that the optical absorbance of (PVA–TiO2) nanocomposites increases with increasing of the SiC nanoparticles concentrations. The energy band gap of (PVA–TiO2) nanocomposites decreases while the optical constants increase with the increase in SiC nanoparticles concentrations. The (PVA–TiO2–SiC) nanocomposites tested for humidity sensors at relative humidity range (40–80) RH.%. The experimental results showed that the electrical resistance for (PVA–TiO2–SiC) nanocomposites decreases with increase in relative humidity. The (PVA–TiO2–SiC) nanocomposites have highly sensitivity for relative humidity.


Humidity sensor Metal oxide Density functional theory Optical constants 



The authors thank the University of Babylon-Iraq (College of Education for Pure Sciences, Department of Physics and College of Science, Department of Physics).


  1. 1.
    B.C. Yadav, S. Sikarwar, A. Bhaduri, P. Kumar, Characterization and development of opto-electronic humidity sensor using copper oxide thin film. Int. Adv. Res. J. Sci. Eng. Technol. 2, 105–109 (2015)Google Scholar
  2. 2.
    H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5), 7881–7939 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, Fabrication of relative humidity sensors based on polyimide nanoparticles, Doctoral dissertation, Applied Sciences: School of Engineering Science (2013)Google Scholar
  4. 4.
    S. Karthick, H.S. Lee, S.J. Kwon, R. Natarajan, V. Saraswathy, Standardization, calibration, and evaluation of tantalum-nano rGO–SnO2 composite as a possible candidate material in humidity sensors. Sensors 16(12), 2079 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Zainelabdin, G. Amin, S. Zaman, O. Nur, J. Lu, L. Hultman, M. Willander, CuO/ZnO nanocorals synthesis via hydrothermal technique: growth mechanism and their application as humidity sensor. J. Mater. Chem. 22(23), 11583–11590 (2012)CrossRefGoogle Scholar
  6. 6.
    T. Fei, K. Jiang, S. Liu, T. Zhang, Humidity sensor based on a cross-linked porous polymer with unexpectedly good properties. RSC Adv. 4(41), 21429–21434 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Hdidar, S. Chouikhi, A. Fattoum, M. Arous, A. Kallel, Influence of TiO2 rutile doping on the thermal and dielectric properties of nanocomposite films based PVA. J. Alloys Compd. 750, 375–383 (2018)CrossRefGoogle Scholar
  8. 8.
    J.H. Jang, J.I. Han, Cylindrical relative humidity sensor based on poly-vinyl alcohol (PVA) for wearable computing devices with enhanced sensitivity. Sens. Actuators A 261, 268–273 (2017)CrossRefGoogle Scholar
  9. 9.
    S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, T. Sheela, P.K. Pujari, J. Naik, B. Poojary, Pressure sensitive dielectric properties of TiO2 doped PVA/CN-Li nanocomposite. J. Polym. Res. 22(2), 6 (2015)CrossRefGoogle Scholar
  10. 10.
    S.B. Aziz, M.A. Rasheed, S.R. Saeed, O.G. Abdullah, Synthesis and characterization of CdS nanoparticles grown in a polymer solution using in situ chemical reduction technique. Int. J. Electrochem. Sci 12, 3263–3274 (2017)CrossRefGoogle Scholar
  11. 11.
    T.S. Gaaz, A.B. Sulong, M.N. Akhtar, A.A.H. Kadhum, Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20, 22833–22847 (2015). CrossRefGoogle Scholar
  12. 12.
    D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems (Wiley, New York, 2001)CrossRefGoogle Scholar
  13. 13.
    M. Joshi, R.P. Singh, Cross linking polymers (PVA & PEG) with TiO2 nanoparticles for humidity sensing. Sens. Transducers 110(11), 105 (2009)Google Scholar
  14. 14.
    M.M. El-Desoky, I.M. Morad, M.H. Wasfy, A.F. Mansour, Structural and optical properties of TiO2/PVA nanocomposites. IOSR J. Appl. Phys. (IOSR-JAP) 9(5), 33–43 (2017)Google Scholar
  15. 15.
    Z.J. Zhong, Optical Properties and Spectroscopy of Nanomaterials (World Scientific, Singapore, 2009)CrossRefGoogle Scholar
  16. 16.
    S. Ilican, M. Caglar, Y. Caglar, The effect of deposition parameters on the physical properties of CdxZn1-xS films deposited by spray pyrolysis method. J. Optoelectron. Adv. Mater. 9(5), 1414–1417 (2007)Google Scholar
  17. 17.
    T.K. Hamad, R.M. Yusop, B. Abdullah, E. Yousif, Laser induced modification of the optical properties of nano-ZnO doped PVC films. Int. J. Polym. Sci. 2014, 787595 (2014). CrossRefGoogle Scholar
  18. 18.
    A.A. Nathan, A. Onoja, A. Amah, Influence of PVA, PVP on crystal and optical properties of europium doped strontium aluminate nanoparticles. Am. J. Eng. Res. 4(4), 85–91 (2015)Google Scholar
  19. 19.
    S. Suresh, Investigation of the optical and dielectric properties of the urea L-malic acid NLO single crystal. Am. Chem. Sci. J. 3(3), 325–337 (2013)CrossRefGoogle Scholar
  20. 20.
    K.C. Lalithambika, K. Shanthakumari, S. Sriram, Optical properties of CdO thin films deposited by chemical bath method. Int. J. ChemTech Res. 6(5), 3071–3077 (2014)Google Scholar
  21. 21.
    F.E. Ghodsi, H. Absalan, Comparative study of ZnO thin films prepared by different sol–gel route. Acta Phys. Pol. Ser. A Gen. Phys. 118(4), 659 (2010)CrossRefGoogle Scholar
  22. 22.
    M.A. Gaffar, A.A. El-Fadl, S.B. Anooz, Influence of strontium doping on the indirect band gap and optical constants of ammonium zinc chloride crystals. Physica B 327(1), 43–54 (2003)CrossRefGoogle Scholar
  23. 23.
    N.G. Imam, M.B. Mohamed, Environmentally friendly Zn0.75Cd0.25S/PVA hetero system nanocomposite: UV-stimulated emission and absorption spectra. J. Mol. Struct. 1105, 80–86 (2016)CrossRefGoogle Scholar
  24. 24.
    P. Atkins, J. De Paula, Physical Chemistry for the Life Sciences (Oxford University Press, Oxford, 2011)Google Scholar
  25. 25.
    E. Kavitha, N. Sundaraganesan, S. Sebastian, Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of 4-nitroaniline by density functional method. Ind. J. Pure Appl. Phys. 48, 20–30 (2010)Google Scholar
  26. 26.
    R.V. Hoffman, Organic Chemistry: An Intermediate Text (Wiley, New York, 2004)CrossRefGoogle Scholar
  27. 27.
    N.A. Elmarzugi, T. Adali, A.M. Bentaleb, E.I. Keleb, A.T. Mohamed, A.M. Hamza, Spectroscopic characterization of PEG-DNA biocomplexes by FTIR. J. Appl. Pharm. Sci. 4(8), 6 (2014)Google Scholar
  28. 28.
    N. Arsalani, H. Fattahi, M. Nazarpoor, Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym. Lett. 4(6), 329–338 (2010)CrossRefGoogle Scholar
  29. 29.
    D. Kumar, S.K. Jat, P.K. Khanna, N. Vijayan, S. Banerjee, Synthesis, characterization, and studies of PVA/Co-Doped ZnO nanocomposite films. Int. J. Green Nanotechnol. 4(3), 408–416 (2012)CrossRefGoogle Scholar
  30. 30.
    A.P. Indolia, M.S. Gaur, Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J. Polym. Res. 20(1), 43 (2013)CrossRefGoogle Scholar
  31. 31.
    G.A.M. Amin, M.H. Abd-El Salam, Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles. Mater. Res. Express 1(2), 025024 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci. Mater. Electron. 29, 11598–11604 (2018)CrossRefGoogle Scholar
  33. 33.
    A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym. Mater. 28(4), 1394–1401 (2018)CrossRefGoogle Scholar
  34. 34.
    I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites:(PVA–PEG–PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. 21(2), 397–403 (2017)CrossRefGoogle Scholar
  35. 35.
    A.M. Abdelghany, E.M. Abdelrazek, D.S. Rashad, Impact of in situ preparation of CdS filled PVP nano-composite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130, 302–308 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. 62(11), 978–983 (2017)CrossRefGoogle Scholar
  37. 37.
    N.B. Kumar, V. Crasta, B.M. Praveen, Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10-98) doped by ZnO nanoparticles. Phys. Res. Int. 2014 (2014)Google Scholar
  38. 38.
    A. Hashim, I.R. Agool, K.J. Kadhim, Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci. Mater. Electron. 29(12), 10369–10394Google Scholar
  39. 39.
    S.C. Nagaraju, A.S. Roy, J.B. Prasanna Kumar, K.R. Anilkumar, G. Ramagopal, Humidity sensing properties of surface modified polyaniline metal oxide composites. J. Eng. 2014, Article ID 925020 (2014)Google Scholar
  40. 40.
    A. Hashim, A. Hadi, Novel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterization. Ukr. J. Phys. 63(8), 754–758 (2018)CrossRefGoogle Scholar
  41. 41.
    A. Hashim, M.A. Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. (2018). Google Scholar
  42. 42.
    R. Srivastava, Effect of poly ethylene glycolon moisture sensing of copper ferrite nanocomposite. Am. J. Sens. Technol. 3(1), 1–4 (2015)Google Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Physics, College of Education for Pure SciencesUniversity of BabylonHillahIraq
  2. 2.Department of Physics, College of ScienceUniversity of BabylonHillahIraq

Personalised recommendations