Tensile and Electrical Insulation Properties of Epoxy/Micro-silica Composites

  • Jae-Jun ParkEmail author
Regular Paper


The effect of epoxy species on the tensile and electrical insulation properties of epoxy/micro-silica composites was studied by using three species of epoxy resins for high voltage insulators. The mixing ratio of spherical type micro-silica was varied at 40–70 wt% in each epoxy systems. Tensile strength of three Epoxy/micro-silica composites was lower than that of the each neat epoxy system and increased with increasing micro-silica content in each system. The maximum tensile strength was 86.0 MPa in Epoxy 2/micro-silica (70 wt%) composite. Electrical insulation breakdown strength of three Epoxy 1/micro-silica, Epoxy 2/micro-silica, Epoxy 3/micro-silica composites was higher than that of the each neat Epoxy 1, Epoxy 2 and Epoxy 3. The maximum electrical insulation breakdown strength was 55 kV/2mm in Epoxy 2/micro-silica (50 wt%) composite.


Tensile strength Electrical insulation breakdown strength Epoxy/micro-silica/composite Weibull statistical analysis 


  1. 1.
    P.J. Baird, H. Herman, G.C. Stevens, in Conference Record of the 2008 IEEE International Symposium on Electrical Insulation (Vancouver, Canada, 2008), pp. 742–745.
  2. 2.
    J. Hao, C. Liu, Y. Li, R. Liao, Q. Liao, C. Tang, Materials 11, 851 (2018). CrossRefGoogle Scholar
  3. 3.
    R. Raja, S. Usa Prapu, K. Udayakumar, M. Abdullah Khan, S.S.M. Abdul Majeed, IEEE Trans. Dielectr. Electr. Insul. 14, 1207 (2007). CrossRefGoogle Scholar
  4. 4.
    S.H. Mahdi, W.H. Jassim, I.A. Hamad, K.A. Jasima, Energy Procedia 119, 501 (2017). CrossRefGoogle Scholar
  5. 5.
    E.A. Cherney, R.S. Gorur, IEEE Trans Dielectr. Electr. Insul. 6, 605 (1999). CrossRefGoogle Scholar
  6. 6.
    G. Iyer, R.S. Gorur, R. Richert, A. Krivda, L.E. Schmidt, IEEE Trans. Dielectr. Electr. Insul. 18, 659 (2011). CrossRefGoogle Scholar
  7. 7.
    F. Shiravand, J.M. Hutchinson, Y. Calventus, Polym. Eng. Sci. 54, 51 (2013). CrossRefGoogle Scholar
  8. 8.
    M. Amin, M. Ali, A. Khattak, Sci. Eng. Compos. Mater. 25, 753 (2017). CrossRefGoogle Scholar
  9. 9.
    E. Preisegger, R. Dürschner, W. Klotz, C.-A. König, H. Krähling, C. Neumann, B. Zahn, in Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation, ed. By J. van Ham, A.P.M. Baede, L.A. Meyer, R. Ybema (Kluwer Academic Publishers, 2000), pp. 391–398Google Scholar
  10. 10.
    T. Imai, F. Sawa, T. Ozaki, T. Shimizu, S. Kuge, M. Kozako, T. Tanaka, IEE J. Trans. FM 126, 1136 (2006)CrossRefGoogle Scholar
  11. 11.
    P.O. Henk, T.W. Kortsen, T. Kvarts, High Perform. Polym. 11, 281 (1999). CrossRefGoogle Scholar
  12. 12.
    Y. Xu, D.D.L. Chung, C. Mroz, Compos. Part A: Appl. Sci. Manuf. 32, 1749 (2001). CrossRefGoogle Scholar
  13. 13.
    M. Ehsani, Z. Farhadinejad, S. Moemen-bellah, S.M. Bagher Alavi, M.M.S. Shrazi, H. Borsi, in 26th Internal Power System Conference, Tehran, Iran, 11-E-CAM-2359 (2011)Google Scholar
  14. 14.
    G. Iyer, R.S. Gorur, A. Krivda, P. Mahonen, in Proceedings of the 16th International Symposium on High Voltage Engineering, Paper E-2 (2009)Google Scholar
  15. 15.
    N. Bernard, S. Theoleyre, G. Valentin, in 16th International Conference and Exhibition on Electricity Distribution, Amsterdam, Netherlands, (IEE Conf. Publ No. 482) CIRED (2001)Google Scholar
  16. 16.
    D.A. Bolon, IEEE Electr. Insul. Mag. 11, 10 (1995)CrossRefGoogle Scholar
  17. 17.
    T. Imai, F. Sawa, T. Yoshimitsu, T. Ozaki, T. Shimizu, in Annual Report Conference on CEIDP (2004), p. 402Google Scholar
  18. 18.
    E. Spruijt, P.M. Biesheuvel, M. de Vos Wiebe, Phys. Rev. E 91, 012601 (2015). CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringJoongbu UniversityGoyangKorea

Personalised recommendations