Advertisement

Optimization of a Meander–Spiral Combination Micro Hotplate for Gas Sensors Based on Numerical Analysis

  • S. Bedoui
  • S. Gomri
  • A. Kachouri
Regular Paper
  • 4 Downloads

Abstract

In this paper, we presented the design and simulation results of a platinum meander–spiral combination micro heater for a zinc oxide (ZnO) gas sensor. As a first step, different optimizations have been performed using a finite element analysis in order to obtain a compromise between maximum temperature, maximum homogeneity in active area and minimum power consumption. In the other hand, the effect of ZnO sensitive layer was studied.

Keywords

Metal oxide Gas sensor Heater Meander–spiral combination ZnO sensitive layer 

References

  1. 1.
    D. Monika, A. Arora, Int. J. Adv. Res. Comput. Eng. Technol. 2, 8 (2013)Google Scholar
  2. 2.
    S.D. Kim, B.J. Kim, J.H. Yoon, J.S. Kim, J. Korean Phys. Soc. 51, 2069–2076 (2007).  https://doi.org/10.3938/jkps.51.2069 CrossRefGoogle Scholar
  3. 3.
    S. Bedoui, S. Gomri, H. Charfeddine Samet, A. Kachouri, in International Multi Conference on Systems, Signals & Devices (SSD) (2016).  https://doi.org/10.1109/SSD.2016.7473712
  4. 4.
    V.S. Amrita, Ph.D. Dissertation University Ottawa Ontario, p. 50 (2015)Google Scholar
  5. 5.
    G. Velmathi, S. Mohan, N. Ramshanker, Int. J. Emerg. Trends Electr. Electron. 5, 2 (2013)Google Scholar
  6. 6.
    L. Sujatha, V.S. Selvakumar, S. Aravind, R. Padamapriya, B. Preethi, in Excerpt from the Proceedings of the COMSOL Conference Bangalore (2012)Google Scholar
  7. 7.
    A. Botau, D. Bonfert, C. Negrea, P. Svasta, C. Ionescu, in 38th International Spring Seminar on Electronics Technology (2015).  https://doi.org/10.1109/isse.2015.7248022
  8. 8.
    S. Bedoui, S. Gomri, H. Charfeddine Samet, A. Kachouri, Trans. Electr. Electron. Mater. 17, 189–195 (2016).  https://doi.org/10.4313/TEEM.2016.17.4.189 CrossRefGoogle Scholar
  9. 9.
    N. Kumar, N. Mehta, Int. J. Eng. Sci. 4, 7 (2015)Google Scholar
  10. 10.
    H. Kumar, K.K. Sing, N. Sood, A. Kumar, R.K. Mittal, in Sensors Applications Symposium (2014). https://doi.org/10.1109/sas.2014.6798942Google Scholar
  11. 11.
    K.G. Girija, D. Kaur, V. Belwanshi, J. Mehta, R.K. Vatsa, A. Topkar, in Proceedings of the 2015 2nd International Symposium on Physics and Technology of Sensors, Pune, India (2015). https://doi.org/10.1109/ispts.2015.7220075Google Scholar
  12. 12.
    S. Bedoui, S. Gomri, H. CharfeddineSamet, A. Kachouri, Trans. Electr. Electron. Mater. 19, 41 (2018).  https://doi.org/10.1007/s42341-018-0001-4 CrossRefGoogle Scholar
  13. 13.
    S. Bedoui, S. Gomri, H. Charfeddine Samet, A. Kachouri, J. Telecommun. Electron. Comput. Eng. 9, 2 (2017)Google Scholar
  14. 14.
    C. Rossi, P. Temple-Boyer, D. Estève, Sens. Actuators A Phys. 64, 241–245 (1998).  https://doi.org/10.1016/S0924-4247(97)01627-0 CrossRefGoogle Scholar
  15. 15.
    D.S. Lee, Y.H. Choi, M.Y. Jun, in Sensors, 2012 IEEE (2012).  https://doi.org/10.1109/icsens.2012.6411404
  16. 16.
    S.H. Hong, J.H. Jang, T.J. Park, Appl. Phys. Lett. 87, 152106 (2005).  https://doi.org/10.1063/1.2093932 CrossRefGoogle Scholar
  17. 17.
    C. Tsamis, A.G. Nassiopoulo, A. Tserepi, Sens. Actuators B Chem. 95, 78–82 (2003).  https://doi.org/10.1016/S0925-4005(03)00409-X CrossRefGoogle Scholar
  18. 18.
    J. Kathirvelan, R. Vijayaraghavan, J. Eng. Appl. Sci. 9, 11 (2014)Google Scholar
  19. 19.
    G. Saxena, R. Paily, Microsyst. Technol. 21, 2331–2338 (2015).  https://doi.org/10.1007/s00542-014-2337-y CrossRefGoogle Scholar
  20. 20.
    J. Jońca, A. Ryzhikov, S. PalussiHre, J. Esvan, K. Fajerwerg, P. Menini, M.L. Kahn, P. Fau, ChemPhysChem 18, 2658–2665 (2017).  https://doi.org/10.1002/cphc.201700693 CrossRefGoogle Scholar
  21. 21.
    M. Saadaoui, Ph.D. Thesis, Paul Sabatier University (2005)Google Scholar
  22. 22.
    V.K. Khana, M. Parasad, V.K. Dwivedi, C. Shekhar, A.C. Pankaj, J. Basu, Ind. J. Pure Appl. Phys. 45, 4 (2007)Google Scholar
  23. 23.
    S. Sinha, S. Roy, C.K. Sarkar, Int. J. Comput. Appl. 26–31 (2011)Google Scholar
  24. 24.
    H. Chalabi, Ph.D. Dissertation, University Paul Cézanne, Tunisian, p. 57 (2007)Google Scholar
  25. 25.
    S. Astié, Ph.D. Thesis, Paul Sabatier University, Toulouse (1998)Google Scholar
  26. 26.
    P. Rai, Y.S. Kim, H.M. Song, M.K. Song, Y.T. Yu, Sens. Actuators B Chem. 165, 133–142 (2012).  https://doi.org/10.1016/j.snb.2012.02.030 CrossRefGoogle Scholar
  27. 27.
    C.M. Barrado, E.R. Leite, P.R. Bueno, E. Longo, J.A. Varela, J. Mater. Sci Eng. 371, 377–381 (2004).  https://doi.org/10.1016/j.msea.2003.09.069 CrossRefGoogle Scholar
  28. 28.
    O. Lupan, T. Pauporté, B. Viana, V.V. Ursaki, I.M. Tiginyanu, V. Sontea, L. Chow, J. Nanoelectron. Optoelectron. 7, 712–718 (2012).  https://doi.org/10.1166/jno.2012.1413 CrossRefGoogle Scholar
  29. 29.
    D. Nohavica, P. Gladkov, Olomouc, Czech Republic, EU (2010)Google Scholar
  30. 30.
    D. Chen, Z. Zhang, M. Jilong, W. Wang, Sensors 17, 1015 (2017).  https://doi.org/10.3390/s17051015 CrossRefGoogle Scholar
  31. 31.
    N.L. Hung, H. Kim, S.K. Hong, D. Kim, Sens. Actuators B Chem. 151, 127–132 (2010).  https://doi.org/10.1016/j.snb.2010.09.036 CrossRefGoogle Scholar
  32. 32.
    R.K. Joshi, Q. Hu, F. Alvi, N. Kumar, J. Phys. Chem. 113, 16199–16202 (2009).  https://doi.org/10.1021/jp906458b CrossRefGoogle Scholar
  33. 33.
    Y. Zeng, L. Qiao, Y. Bing, M. Wen, B. Zou, W. Zheng, T. Zhang, G. Zou, Sens. Actuators B Chem. 173, 897–902 (2012).  https://doi.org/10.1016/j.snb.2012.05.090 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  1. 1.Research Laboratory of Electronics and Information TechnologiesDepartment of Electrical Engineering, National School of Engineers Sfax, University of SfaxSfaxTunisia
  2. 2.Micro Electro Thermal Systems (METS) Laboratory, Department of Electrical Engineering, National School of Engineering of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations