Advertisement

Dielectric, Electrical and Conduction Mechanism Study of 0.6BiFeO3–0.4PbTiO3

  • Truptimayee Sahu
  • Banarji Behera
Regular Paper

Abstract

0.6BiFeO3–0.4PbTiO3 sample was prepared using conventional solid state reaction route. The X-ray diffraction confirmed the formation of the sample. The microstructure study was carried out using field emission scanning electron microscope. A good dielectric value was observed at room temperature. The impedance study showed the non-Debye type of behaviour and the Nyquist plot fit confirmed the contribution of both grain and grain boundary effect in the material. The ac conductivity obeyed Jonscher’s power law. The temperature variation of frequency exponent suggested that overlapping large polaron tunnelling model was appropriate to understand the conduction mechanism within the temperature range (250–350 °C). The temperature variation of ac conductivity followed Arrhenius equation.

Keywords

Perovskite structure X-ray diffraction Complex impedance spectroscopy OLPT model 

Notes

Acknowledgements

One of the authors (Truptimayee Sahu) acknowledges financial support from a DST-INSPIRE Fellowship, New Delhi, India to carry out the research. This author also acknowledges financial support through DRS-1 from UGC (No. 530/17/DRS/2009), New Delhi, India under SAP and the FIST program of DST (No. SR/FST/PSI-179/2012), New Delhi, India for the development of research work at School of Physics, Sambalpur University, Odisha. The other author (B. Behera) acknowledges support from SERB under the DST Fast Track Scheme for Young Scientists (Project No. SR/FTP/PS-036/2011), New Delhi, India.

References

  1. 1.
    Z. Zhang, Y. Sui, X. Wang, Y. Wang, Z. Wang, J. Alloys Compd. 507, 157 (2010)CrossRefGoogle Scholar
  2. 2.
    P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, O. Eriksson, Phys. Rev. B 74, 224412 (2006)CrossRefGoogle Scholar
  3. 3.
    J.F. Scott, Nat. Mater. 6, 256 (2007)CrossRefGoogle Scholar
  4. 4.
    M. Bibes, A. Barthelemy, Nat. Mater. 7, 425 (2008)CrossRefGoogle Scholar
  5. 5.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  6. 6.
    D. Lebeugle, D. Colson, A. Forget, M. Viret, Appl. Phys. Lett. 91, 022907 (2007)CrossRefGoogle Scholar
  7. 7.
    D.P. Dutta, O.D. Jayakumar, A.K. Tyagi, K.G. Girija, C.G.S. Pillai, G. Sharma, Nanoscale 2, 1149 (2010)CrossRefGoogle Scholar
  8. 8.
    C. Fanggao, S. Guilin, F. Kun, Q. Ping, Z. Qijun, J. Rare Earths 24, 273 (2006)CrossRefGoogle Scholar
  9. 9.
    G.L. Yuan, S.W. Or, H.L.W. Chan, Z.G. Liu, J. Appl. Phys. 101, 024106 (2007)CrossRefGoogle Scholar
  10. 10.
    S.W. Lee, K.B. Shim, K.H. Auh, P. Knott, Mater. Lett. 38, 356 (1999)CrossRefGoogle Scholar
  11. 11.
    B. Jaffe Jr., W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971)Google Scholar
  12. 12.
    S. Zhang, H. Li, M. Li, Mater. Lett. 62, 2438 (2008)CrossRefGoogle Scholar
  13. 13.
    M.A. Khan, T.P. Comyn, A.J. Bell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2583 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Bhattacharjee, D. Pandey, J. Appl. Phys. 110, 084105 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Katoch, C.D. Sekhar, V. Adyam, J.F. Scott, R. Gupta, A. Garg, J. Phys. Condens. Mater. 28, 075901 (2016)CrossRefGoogle Scholar
  16. 16.
    S.A. Fedulov, P.B. Ladyzhinskii, I.L. Pyatigorskaya, Y.N. Venevtsev, Sov. Phys. Solid State. 6, 375 (1964)Google Scholar
  17. 17.
    J. Chen, X.R. Xing, G.R. Liu, J.H. Li, Y.T. Liu, Appl. Phys. Lett. 89, 3 (2006)Google Scholar
  18. 18.
    J. Zhuang, J. Zhao, L.W. Su, H. Wu, A.A. Bokov, W. Ren, Z.G. Ye, J. Mater. Chem. C 3, 12450 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Basu, R. Jana, R. Ranjan, G.D. Mukherjee, Phys. Rev. B 93, 214114 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Bhattacharjee, S. Tripathi, D. Pandey, Appl. Phys. Lett. 91, 042903 (2007)CrossRefGoogle Scholar
  21. 21.
    V.F. Freitas, L.F. Cotica, I.A. Santos, D. Garcia, J.A. Eiras, J. Eur. Ceram. Soc. 31, 2965 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Siddaramanna, C. Srivastava, B. Narayana Rao, R. Ranjan, Solid State Commun. 160, 56 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Liu, L. Huang, J. Li, S.O. Brien, J. Appl. Phys. 112, 014108 (2012)CrossRefGoogle Scholar
  24. 24.
    V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, J. Appl. Phys. 103, 024105 (2008)CrossRefGoogle Scholar
  25. 25.
    R. Katoch, C. Sekhar, V. Adyam, J.F. Scott, R. Gupta, A. Garg, J. Phys, Condens. Mater. 28, 075901 (2016)CrossRefGoogle Scholar
  26. 26.
    J.R. Macdonald, Impedance Spectroscopy-Emphasizing Solid Materials and Systems, 2nd edn. (Wiley-Interscience, New York, 1987)Google Scholar
  27. 27.
    J. Plocharski, W. Wieczoreck, Solid State Ionics 28, 979 (1988)CrossRefGoogle Scholar
  28. 28.
    B.V.R. Chowdari, R. Gopalkrishnnan, Solid State Ionics 23, 225 (1987)CrossRefGoogle Scholar
  29. 29.
    T. Badapanda, S. Sarangi, S. Parida, B. Behera, B. Ojha, S. Anwar, J. Mater. Sci.: Mater. Electron. 26, 3069 (2015)Google Scholar
  30. 30.
    B. Yeum, ZSimpWin Version 2.00, E Chem Software (2001)Google Scholar
  31. 31.
    O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97, 084107 (2005)CrossRefGoogle Scholar
  32. 32.
    A.K. Jonscher, Nature 276, 673 (1977)CrossRefGoogle Scholar
  33. 33.
    T. Sahu, B. Behera, J. Mater. Sci.: Mater. Electron. 29, 7412 (2018)Google Scholar
  34. 34.
    A. Ghosh, Phys. Rev. B 42, 1388 (1990)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  1. 1.Material Research Laboratory, School of PhysicsSambalpur UniversityBurlaIndia

Personalised recommendations