Advertisement

Electrical Insulation and Mechanical Properties of Epoxy/Micro-silica (MS)/Micro-alumina (MA) Composites

  • Park Jae-Jun Email author
Regular Paper
  • 6 Downloads

Abstract

Effect of mixture ratio of micro-silica (MS) and micro-alumina (MA) on the electrical insulation and mechanical properties of epoxy composites was investigated in order to develop a new insulation material for high voltage gas insulated switchgears. The mixing ratio of inorganic filler to epoxy resin was fixed to 70 wt%, and the mixture ratio of MS and MA in inorganic filler was 10:0, 9:1, 7:3, 5:5, 3:7, 1:9, and 0:10, respectively. Insulation breakdown strength increased with increasing MS content, however it did not follow the mixture rule of composite showing synergy effect. Those values for neat epoxy, epoxy/MS (70 wt%), and epoxy/MA (70 wt%) were 44.5, 53.4 and 47.1 kV/2 mm, respectively. Tensile strength and flexural strength were measured using a universal testing machine at a crosshead speed of 10 mm/min, and they also increased with increasing MS content, while they did not follow the mixture rule of composite.

Keywords

Insulation breakdown strength Tensile strength Flexural strength Epoxy/micro-silica/micro-alumina composite Weibull statistical analysis 

References

  1. 1.
    CAPIEL, Switchgear and SF6 Gas, CAPIEL HV-ESDD1-R1-1.02 (2002)Google Scholar
  2. 2.
    N. Bernard, S. Theoleyre, G. Valentin, in 16th International Conference and Exhibition on Electricity Distribution, Amsterdam, Netherlands (IEE Conf. Publ No. 482, CIRED, 2001)Google Scholar
  3. 3.
    H.E. Nechmi, A. Beroual, A. Girodet, P. Vinson, IEEE Trans. Dielectr. Electr. Insul. 23, 2587 (2016)CrossRefGoogle Scholar
  4. 4.
    E. Preisegger, R. Dürschner, W. Klotz, C.-A. König, H. Krähling, C. Neumann, B. Zahn, in Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation, ed. by J. van Ham, A.P.M. Baede, L.A. Meyer, R. Ybema (Kluwer, Dordrecht, 2000), pp. 391–398CrossRefGoogle Scholar
  5. 5.
    T. Imai, F. Sawa, T. Ozaki, T. Shimizu, S. Kuge, M. Kozako, T. Tanaka, IEEJ Trans. Fundam. Mater. 126, 1136 (2006)CrossRefGoogle Scholar
  6. 6.
    M. Ehsani, Z. Farhadinejad, S. Moemen-bellah, S.M. Bagher alavi, M.M.S. Shrazi, H. Borsi, in 26th Internal Power System Conference, Tehran, Iran, 11-E-CAM-2359 (2011)Google Scholar
  7. 7.
    P.O. Henk, T.W. Kortsen, T. Kvarts, High Perform. Polym. 11, 281 (1999).  https://doi.org/10.1088/0954-0083/11/3/304 CrossRefGoogle Scholar
  8. 8.
    Y. Xu, D.D.L. Chung, C. Mroz, Compos. A Appl. Sci. Manuf. 32, 1749 (2001).  https://doi.org/10.1016/S1359-835X(01)00023-9 CrossRefGoogle Scholar
  9. 9.
    T. Imai, F. Sawa, T. Yoshimitsu, T. Ozaki, T. Shimizu, in Annual Report Conference on CEIDP (2004), p. 402Google Scholar
  10. 10.
    D. Nyfeler, T. Armbruster, Am. Mineral. 83, 119 (1998)CrossRefGoogle Scholar
  11. 11.
    E. Spruijt, P.M. Biesheuvel, W.M. de Vos, Phys. Rev. E 91, 012601 (2015).  https://doi.org/10.1103/PhysRevE.91.012601 CrossRefGoogle Scholar
  12. 12.
    B.K. Sarkar, Bull. Mater. Sci. 21, 329 (1998)CrossRefGoogle Scholar
  13. 13.
    S.S. Rangaraj, S.B. Bhaduri, J. Mater. Sci. 29, 2795 (1994)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringJoongbu UniversityGoyangKorea

Personalised recommendations