Advertisement

Advancement of CMOS Transimpedance Amplifier for Optical Receiver

  • Md. Torikul Islam BadalEmail author
  • Mamun Bin Ibne Reaz
  • Lye Suet Yeng
  • Mohammad Arif Sobhan Bhuiyan
  • Fahmida Haque
Review Paper
  • 36 Downloads

Abstract

Transimpedance amplifier (TIA) is an essential component of optical receivers, and this type of amplifier converts the photocurrent to a voltage signal. The overall performance of the optical receiver greatly depends on the performance of this component. Low-power, low-noise, and compact TIA has been realized in current development in CMOS technology. The high demands of an optical receiver has led to the optimization and development of the TIA designed specifications. However, the conventional CMOS TIA design is limited mainly because of its dependency on input node capacitance. In this article, the advancement of TIAs in data communication and instrumentation based on different design architectures and performances is discussed. This review will serve as a comparative study and reference for designing fully integrated CMOS TIA for future optical receivers.

Keywords

CMOS Gain Optical receiver Sensor TIA 

Notes

Acknowledgements

This research is financially supported by University Kebangsaan Malaysia and MOSTI. Project Code: AP-2017-008/1.

References

  1. 1.
    M. Marufuzzaman, M.B.I. Reaz, L.S. Yeng, L.F. Rahman, T.I. Badal, Design of low-cost transimpedance amplifer for optical receiver. Trans. Electr. Electron. Mater. 19(1), 7–13 (2018).  https://doi.org/10.1007/s42341-018-0008-x CrossRefGoogle Scholar
  2. 2.
    M.A.S. Bhuiyan, M.B.I. Reaz, T.I. Badal, M.A. Mukit, N. Kamal, Design of an active inductor-based T/R switch in 0.13 μm CMOS technology for 2.4 GHz RF transceivers. Trans. Electr. Electron. Mater. 17, 261–269 (2016).  https://doi.org/10.4313/teem.2016.17.5.261 CrossRefGoogle Scholar
  3. 3.
    L.F. Rahman, M.B.I. Reaz, M. Marufuzzaman, M.B. Mashur, M.T.I. Badal, Evaluation of low power and high speed CMOS current comparators. Trans. Electr. Electron. Mater. 17(6), 317–328 (2016).  https://doi.org/10.4313/TEEM.2016.17.6.317 CrossRefGoogle Scholar
  4. 4.
    M.A.S. Bhuiyan, Y. Zijie, J.S. Yu, M.B.I. Reaz, N. Kamal, T.G. Chang, Active inductor based fully integrated CMOS transmit/receive switch for 2.4 GHz RF transceiver. Anais da Academia Brasileira de Ciências 88, 1089–1098 (2016).  https://doi.org/10.1590/0001-3765201620150123 CrossRefGoogle Scholar
  5. 5.
    J.M. García del Pozo, W.A. Serdijn, A. Otín, S. Celma, 2.5 Gb/s CMOS preamplifier for low-cost fiber-optic receivers. Analog. Integr. Circuits Process. 66, 363–370 (2011).  https://doi.org/10.1007/2Fs10470-010-9526-0 CrossRefGoogle Scholar
  6. 6.
    S. Kudszus, A. Shahani, S. Pavan, D.K. Shaeffer, and M. Tarsia, A 46-GHz distributed transimpedance amplifier using SiGe bipolar technology, in IEEE international MTT-S in Microwave Symposium Digest (2003), pp. 1387–1390.  https://doi.org/10.1109/mwsym.2003.1212630
  7. 7.
    H. Zheng, R. Ma, M. Liu, A 77-dB dynamic range low-power variable-gain transimpedance amplifier for linear LADAR. IEEE Trans. Circuits Syst. II Express Briefs 65(2), 171–175 (2018).  https://doi.org/10.1109/tcsii.2017.2684822 CrossRefGoogle Scholar
  8. 8.
    M.A.S. Bhuiyan, M.B.I. Reaz, Shunt-feedback transimpedance amplifier in 0.18 μm CMOS technology, in 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA) (2013), pp. 687–690.  https://doi.org/10.1109/IMSNA.2013.6743369
  9. 9.
    T. Takemoto, H. Yamashita, T. Yazaki, N. Chujo, Y. Lee, Y. Matsuoka, A 25-to-28 Gb/s high-sensitivity (9.7 dBm) 65 nm CMOS optical receiver for board-to-board interconnects. IEEE J. Solid-State Circuits 49, 2259–2276 (2014).  https://doi.org/10.1109/2Fjssc.2014.2349976 CrossRefGoogle Scholar
  10. 10.
    S.M. Rezaul Hasan, Design of a low-power 3.5 GHz broad-band CMOS transimpedance amplifier for optical transceivers. IEEE Trans. Circuits Syst. 52, 1061–1072 (2005).  https://doi.org/10.1109/tcsi.2005.849101 CrossRefGoogle Scholar
  11. 11.
    U. Alvarado, G. Bistué, I. Adin, Low Power RF Circuit Design in Standard CMOS Technology (Springer, Berlin, 2011), p. 104.  https://doi.org/10.1007/978-3-642-22987-9 Google Scholar
  12. 12.
    Z. Lu, K.S. Yeo, W.M. Lim, M.A. Do, C.C. Boon, Design of a CMOS broadband transimpedance amplifier with active feedback. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18, 461–472 (2010).  https://doi.org/10.1109/tvlsi.2008.2012262 CrossRefGoogle Scholar
  13. 13.
    Q. Gao, S. Xie, L. Mao, S. Wu, Y. Gu, H. Li, Q. Song, A single-to-differential broadband transimpedance amplifier for 12.5 Gb/s optical links. IEEE J. Solid-State Circuits 14, 2 (2017).  https://doi.org/10.1587/elex.13.20161153 Google Scholar
  14. 14.
    H.-L. Chen, C.-H. Chen, W.-B. Yang, J.-S. Chiang, Inductorless CMOS receiver front-end circuits for 10-Gb/s optical communications. Tamkang J. Sci. Eng. 12, 449–458 (2009)Google Scholar
  15. 15.
    J. Charlamov, R. Navickas, Design of CMOS differential transimpedance amplifier. Elektron. Elektrotech. 21, 37–41 (2015).  https://doi.org/10.5755/j01.eee.21.1.4548 Google Scholar
  16. 16.
    Y. Fei, Low-voltage CMOS current-mode preamplifier: analysis and design. IEEE Trans. Circuits Syst. I Regul. Pap. 53, 26–39 (2006).  https://doi.org/10.1109/tcsi.2005.854414 CrossRefGoogle Scholar
  17. 17.
    O. Momeni, H. Hashemi, E. Afshari, A 10 Gb/s inductorless transimpedance amplifier. IEEE Trans. Circuits Syst. II Express Briefs 57, 926–930 (2010).  https://doi.org/10.1109/tcsii.2010.2087971 CrossRefGoogle Scholar
  18. 18.
    A. Trabelsi, M. Boukadoum, Comparison of two CMOS front-end transimpedance amplifiers for optical biosensors. IEEE Sens. J. 13, 657–663 (2013).  https://doi.org/10.1109/jsen.2012.2225141 CrossRefGoogle Scholar
  19. 19.
    W. Xu, D.L. Mathine, J.K. Barton, High-gain differential CMOS transimpedance amplifier with on-chip buried double junction photodiode. Electron. Lett. 42, 803–805 (2006).  https://doi.org/10.1049/el:20061560 CrossRefGoogle Scholar
  20. 20.
    P. Wright, K.B. Ozanyan, S.J. Carey, H. McCann, Design of high-performance photodiode receivers for optical tomography. IEEE Sens. J. 5, 281–288 (2005).  https://doi.org/10.1109/jsen.2004.841869 CrossRefGoogle Scholar
  21. 21.
    M. Li, B. Hayes-Gill, I. Harrison, 6 GHz transimpedance amplifier for optical sensing system in low-cost 0.35 µm CMOS. Electron. Lett. 42, 1278–1279 (2006).  https://doi.org/10.1049/el:20062961 CrossRefGoogle Scholar
  22. 22.
    R. Yun, V.J. Koomson, A novel CMOS frequency-mixing transimpedance amplifier for frequency domain near infrared spectroscopy. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 84–94 (2013).  https://doi.org/10.1109/biocas.2010.5709615 CrossRefGoogle Scholar
  23. 23.
    F. Aznar, W. Gaberl, H. Zimmermann, A 0.18 μm CMOS transimpedance amplifier with 26 dB dynamic range at 2.5 Gb/s. Microelectron. J. 42, 1136–1142 (2011).  https://doi.org/10.1016/j.mejo.2011.06.005 CrossRefGoogle Scholar
  24. 24.
    Y.H. Chang, Y.C. Chiang, C.Y. Yang, A 42.15–68.35 dBΩ tunable gain transimpedance amplifier using 0.18-μm CMOS process. Microw. Opt. Technol. Lett. 57, 830–832 (2015).  https://doi.org/10.1002/mop.28969 CrossRefGoogle Scholar
  25. 25.
    E. Säckinger, Broadband Circuits for Optical Fiber Communication (Wiley, New York, 2005).  https://doi.org/10.1002/0471726400 CrossRefGoogle Scholar
  26. 26.
    H. Zquez, F. Dualibe, G. Popov, A 0.5 V fully differential transimpedance amplifier in 65-nm CMOS technology, in IEEE International Midwest Symposium on Circuits and Systems (2017).  https://doi.org/10.1109/mwscas.2017.8053035.s
  27. 27.
    C.-H. Lu, W.-Z. Chen, Bandwidth enhancement techniques for transimpedance amplifier in CMOS technologies, in Proceedings of the 27th European Solid-State Circuits Conference (2001), pp. 174–177.  https://doi.org/10.1109/icm.2013.6734945
  28. 28.
    J. Jun-De, S.S.H. Hsu, A 40-Gb/s transimpedance amplifier in 0.18-μm CMOS technology. IEEE J. Solid State Circuits 43, 1449–1457 (2008)CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, Design of CMOS Front-End Receivers for Optical Wireless Communication (Tufts University, Medford, 2008)Google Scholar
  30. 30.
    C.A. Holt, Electronic Circuits: Digital and Analog (Wiley, New York, 1978)Google Scholar
  31. 31.
    P. Muller, Y. Leblebici, Transimpedance Amplifier Design: CMOS Multichannel Single-Chip Receivers for Multi-gigabit Optical Data Communications (Springer, Dordrecht, 2007), pp. 73–93.  https://doi.org/10.1007/978-1-4020-5912-4 Google Scholar
  32. 32.
    Z. Yan, P.-I. Mak, R.P. Martins, Two stage operational amplifiers: power and area efficient frequency compensation for driving a wide range of capacitive load. IEEE Circuits Syst. Mag. 11, 26–42 (2011).  https://doi.org/10.1109/mcas.2010.939783 Google Scholar
  33. 33.
    B. Razavi, A 622 Mb/s 4.5 pA/spl radic/Hz CMOS transimpedance amplifier for optical receiver front-end, in IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers (2000), pp. 162–163.  https://doi.org/10.1109/isscc.2000.839732
  34. 34.
    E. Sackinger, W. Guggenbuhl, A high-swing, high-impedance MOS cascode circuit. IEEE J. Solid-State Circuits 25, 289–298 (1990).  https://doi.org/10.1109/4.50316 CrossRefGoogle Scholar
  35. 35.
    B. Chen, RFIC Applications with CMOS Technology (City University of New York, Ann Arbor, 2006)Google Scholar
  36. 36.
    J.H. Chuah, D. Holburn, Design of low-noise CMOS transimpedance amplifier. Microelectron. Int. 30, 115–124 (2013).  https://doi.org/10.1108/mi-11-2012-0080 CrossRefGoogle Scholar
  37. 37.
    M. Atef, H. Zimmermann, Low-power 10 Gb/s inductorless inverter based common-drain active feedback transimpedance amplifier in 40 nm CMOS. Analog Integr. Circuits Process 76, 367–376 (2013).  https://doi.org/10.1007/s10470-013-0117-8 CrossRefGoogle Scholar
  38. 38.
    P. Muller, Y. Leblebici, CMOS Multichannel Single-Chip Receivers for Multi-gigabit Optical Data Communications (Springer, Berlin, 2007).  https://doi.org/10.1007/978-1-4020-5912-4 CrossRefGoogle Scholar
  39. 39.
    A. Tanabe et al., A single-chip 2.4-Gb/s CMOS optical receiver IC with low substrate cross-talk preamplifier. IEEE J. Solid-State Circuits 33, 12 (1998).  https://doi.org/10.1109/4.735558 CrossRefGoogle Scholar
  40. 40.
    M. Azadeh, Optical receiver design, in Fiber Optics Engineering, ed. by B. Mukherjee (Springer, Berlin, 2009), pp. 235–264CrossRefGoogle Scholar
  41. 41.
    C. Kromer et al., A low-power 20-GHz 52-dBΩ transimpedance amplifier in 80-nm CMOS. IEEE J. Solid-State Circuits 39, 885–894 (2004).  https://doi.org/10.1109/jssc.2004.827807 CrossRefGoogle Scholar
  42. 42.
    D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti et al., A low-noise design technique for high-speed CMOS optical receivers. IEEE J. Solid-State Circuits 49, 1437–1447 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Shahdoost, A. Medi, N. Saniei, Design of low-noise transimpedance amplifiers with capacitive feedback. Analog Integr. Circuits Process. 86, 233–240 (2016).  https://doi.org/10.1007/s10470-015-0669-x CrossRefGoogle Scholar
  44. 44.
    D. Chen, K.S. Yeo, X. Shi, M.A. Do, C.C. Boon, W.M. Lim, “Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21, 1516–1525 (2013).  https://doi.org/10.1109/tvlsi.2012.2211086 CrossRefGoogle Scholar
  45. 45.
    H. Escid, M. Attari, M. Aitaidir, W. Mechti, CMOS optical sensor for an integrated transimpedance circuit. Int. J. Smart Sens. Intell. Syst. 4, 467–481 (2011).  https://doi.org/10.21307/ijssis-2017-451 Google Scholar
  46. 46.
    T.-H. Ngo, T.-W. Lee, H.-H. Park, 4.1 mW 50 dBΩ 10 Gbps transimpedance amplifier for optical receivers in 0.13 μm CMOS. Microw. Opt. Technol. Lett. 53, 448–451 (2011).  https://doi.org/10.1002/mop.25741 CrossRefGoogle Scholar
  47. 47.
    J. Sangirov, I.A. Ukaegbu, T.-W. Lee, M.H. Cho, H.-H. Park, 10 Gbps transimpedance amplifier-receiver for optical interconnects. J. Opt. Soc. Korea 17, 44–49 (2013).  https://doi.org/10.3807/josk.2013.17.1.044 CrossRefGoogle Scholar
  48. 48.
    D. Abd-elrahman, M. Atef, M. Abbas, M. Abdelgawad, Low power transimpedance amplifier using current reuse with dual feedback, in IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (2015), pp. 244–247Google Scholar
  49. 49.
    S.M.R. Hasan, A 0.8 V 40 Gb/s novel CMOS regulated cascode trans-impedance amplifier for optical sensing a lications. J. Signal Process. Syst. 72, 63–68 (2013).  https://doi.org/10.1007/s11265-012-0707-1 CrossRefGoogle Scholar
  50. 50.
    L. Chih-Fan, L. Shen-Iuan, 40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS. IEEE J. Solid-State Circuits 43, 642–655 (2008).  https://doi.org/10.1109/jssc.2007.916626 CrossRefGoogle Scholar
  51. 51.
    S. Salhi, A. Slimane, H. Escid, S.A. Tedjini, Design and analysis of CMOS RCG transimpedance amplifier based on elliptic filter approach. IET Circuits Devices Syst. 12, 497–504 (2018).  https://doi.org/10.1049/iet-cds.2017.0449 CrossRefGoogle Scholar
  52. 52.
    K. Joohwa, J.F. Buckwalter, Bandwidth enhancement with low group-delay variation for a 40-Gb/s transimpedance amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 57, 1964–1972 (2010).  https://doi.org/10.1109/tcsi.2010.2041502 CrossRefGoogle Scholar
  53. 53.
    V. Kushwah, A. Quazi, N. Muchhal, Design of CMOS based transimpedance amplifier for bandwidth enhancement with large gain. Int. J. Comput. A 1, 138 (2016).  https://doi.org/10.5120/ijca2016909067 Google Scholar
  54. 54.
    E. Kamrani, F. Lesage, M. Sawan, Low-noise, high-gain transimpedanee amplifier integrated with SiAPD for low-intensity Ncar-infrared light detection. IEEE Sens. J. 14, 258–269 (2014).  https://doi.org/10.1109/jsen.2013.2282624 CrossRefGoogle Scholar
  55. 55.
    A. Chaddad, C. Tanougast, Low-noise transimpedance amplifier dedicated to biomedical devices: near infrared spectroscopy system, in International Conference on Control, Decision and Information Technologies (CoDIT) (2014).  https://doi.org/10.1109/codit.2014.6996963
  56. 56.
    M.A.S. Bhuiyan, K.A. Tarumaraja, M.B.I. Reaz, F.H. Hashim, S.H.M. Ali, Low noise low power transimpedance amplifier in 0.18 µM CMOS technology. J. Theor. Appl. Inf. Technol. 62, 16–20 (2014)Google Scholar
  57. 57.
    H. Jiaping, K. Yong-Bin, J. Ayers, A low power 100 M ohm CMOS front-end transimpedance amplifier for biosensing applications, in 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (2010), pp. 541–544.  https://doi.org/10.1109/mwscas.2010.5548884
  58. 58.
    H.M. Lavasani, P. Wanling, B. Harrington, R. Abdolvand, F. Ayazi, A 76 dBohm 1.7 GHz 0.18 μm CMOS tunable TIA using broadband current pre-amplifier for high frequency lateral MEMS oscillators. IEEE J. Solid-State Circuits 46, 224–235 (2011).  https://doi.org/10.1109/jssc.2010.2085890 CrossRefGoogle Scholar
  59. 59.
    E. Kamrani, F. Lesage, M. Sawan, Low-noise, high-gain TIA integrated with CMOS APD for low-intensity light detection in near-infrared spectroscopy. IEEE Sens. J. 15, 1 (2013).  https://doi.org/10.1109/jsen.2013.2282624 Google Scholar
  60. 60.
    R. Yun, V.M. Joyner, A monolithically integrated phase-sensitive optical sensor for frequency-domain NIR spectroscopy. IEEE Sens. J. 10, 1234–1242 (2010).  https://doi.org/10.1109/jsen.2010.2044502 CrossRefGoogle Scholar
  61. 61.
    J. Salvia, P. Lajevardi, M. Hekmat, B. Murmann, A 56 MΩ CMOS TIA for MEMS applications, in IEEE Custom Integrated Circuits Conference (2009), pp. 199–202.  https://doi.org/10.1109/cicc.2009.5280878
  62. 62.
    P. Sung Min, L. Jaeseo, Y. Hoi-Jun, 1-Gb/s 80-dBohm fully differential CMOS transimpedance amplifier in multichip on oxide technology for optical interconnects. IEEE J. Solid-State Circuits 39, 971–974 (2004)CrossRefGoogle Scholar
  63. 63.
    J.H. Chuah, D. Holburn, Design of low-noise high-gain CMOS transimpedance amplifier for intelligent sensing of secondary electrons. IEEE Sens. J. 15, 5997–6004 (2015).  https://doi.org/10.1109/jsen.2015.2452934 CrossRefGoogle Scholar
  64. 64.
    A. Atef, M. Atef, M. Abbas, E. E. M. Khaled, High-sensitivity regulated inverter cascode transimpedance amplifier for near infrared spectroscopy, in Fourth International Japan–Egypt Conference on Electronics, Communications and Computers (JEC-ECC) (2016), pp. 99–102.  https://doi.org/10.1109/jec-ecc.2016.7518977
  65. 65.
    J. Han, B. Choi, M. Seo, J. Yun, D. Lee, T. Kim et al., A 20-Gb/s transformer-based current-mode optical receiver in 0.13-CMOS. IEEE Trans. Circuits Syst. II Express Briefs 57, 348–352 (2010).  https://doi.org/10.1109/tcsii.2010.2047309 CrossRefGoogle Scholar
  66. 66.
    W.-Z. Chen, Y.-L. Cheng, D.-S. Lin, A 1.8-V 10-Gb/s fully integrated CMOS optical receiver analog front-end. IEEE J. Solid-State Circuits 40, 1388–1396 (2005).  https://doi.org/10.1109/esscir.2004.1356668 CrossRefGoogle Scholar
  67. 67.
    C.-H. Wu, C.-H. Lee, W.-S. Chen, S.-I. Liu, CMOS wideband amplifiers using multiple inductive-series peaking technique. IEEE J. Solid-State Circuits 40, 548–552 (2005).  https://doi.org/10.1109/jssc.2004.840979 CrossRefGoogle Scholar
  68. 68.
    B. Razavi, Prospects of CMOS technology for high-speed optical communication circuits. IEEE J. Solid-State Circuits 37, 1135–1145 (2002).  https://doi.org/10.1109/jssc.2002.801195 CrossRefGoogle Scholar
  69. 69.
    Y.-H. Oh, S.-G. Lee, An inductance enhancement technique and its application to a shunt-peaked 2.5 Gb/s transimpedance amplifier design. IEEE Trans. Circuits Syst. II Express Briefs 51, 624–628 (2004).  https://doi.org/10.1109/tcsii.2004.836883 CrossRefGoogle Scholar
  70. 70.
    C. Talarico, G. Agrawal, J. W. Roveda, A 60 dBO 2.9 GHz 0.18 µm CMOS transimpedance amplifier for a fiber optic receiver application, in 57th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (2014), pp. 181–184.  https://doi.org/10.1109/prime.2016.7519513
  71. 71.
    Z. Lu, K.S. Yeo, J. Ma, M.A. Do, W.M. Lim, X. Chen, Broad-band design techniques for transimpedance amplifiers. IEEE Trans. Circuits Syst. I Regul. Pap. 54, 590–600 (2007).  https://doi.org/10.1109/tcsi.2006.887610 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  1. 1.Department of Electrical, Electronic and Systems EngineeringUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Electrical and Electronics EngineeringXiamen University MalaysiaSepangMalaysia

Personalised recommendations