Advertisement

Changing Storylines in Public Perceptions of Mathematics Education

  • David WagnerEmail author
Article
  • 4 Downloads

Abstract

I analyse the storylines identified by mathematics educators as representative of public perceptions of mathematics education. I consider these storylines in light of positioning theory’s focus on immanence and its emphasis on the negotiability of storylines, and in light of rhetorical devices associated with myths. Using a functionalist-informed orientation to the storylines, I ask what needs do they address. The article begins and ends with reflection on a specific incident of public interaction—a criticism of mathematics educators in online discussion of a news article. I consider different storylines for interpreting the criticism and encourage mathematics educators to pursue opportunities to change storylines.

Keywords

Mathematics education Positioning theory Storylines Myth Functionalism Public perception 

Résumé

Dans cet article, j’analyse les récits identifiés par les éducateurs en mathématiques comme représentatifs des façons dont l’enseignement des mathématiques est perçu par le public. Je me penche sur ces récits et centre mon analyse théorique sur leur immanence et leur aspect négociable ou convenu, et je me sers de procédés rhétoriques associés aux mythes. J’applique aux récits une orientation fonctionnaliste, et je pose la question: quels besoins ces récits comblent-ils? L’article commence et se termine par une réflexion sur un incident spécifique d’interaction publique, une critique en ligne d’enseignants des mathématiques qui discutent d’un article publié dans les nouvelles. En particulier, je vise à prendre en considération les besoins de la personne qui fait la critique et à déterminer comment la reconnaissance de ces besoins est susceptible d’influencer ma réaction. Cette démarche me conduit à encourager les éducateurs en mathématiques à poursuivre activement les occasions qui pourraient faire modifier la teneur de ces récits.

Notes

References

  1. Abtahi, Y. & Barwell, R. (2017). Where are the children? An analysis of news media reporting on mathematics education. Proceedings of the Ninth International Mathematics Education and Society Conference, (vol. 2, pp. 359–360), Volos, Greece.Google Scholar
  2. Andersson, A., & Wagner, D. (2018). Re-mythologizing mystery in mathematics: Teaching for open landscapes versus concealment. Education Sciences, 8(2), 41.CrossRefGoogle Scholar
  3. Anderson, R, Boaler, J., & Dieckmann, J. (2018). Achieving elusive teacher change through challenging myths about learning: A blended approach. Education Sciences, 8, 98.CrossRefGoogle Scholar
  4. Barthes, R. (1972/2009). Mythologies (trans., A. Lavers). London: Vintage Classics.Google Scholar
  5. Chorney, S., Ng, O., & Pimm, D. (2016). A tale of two more metaphors: Storylines about mathematics education in Canadian national media. Canadian Journal of Science, Mathematics and Technology Education, 16(4), 402–418.CrossRefGoogle Scholar
  6. Clements, D. & Sarama, J. (2018). Myths of early math. Education Sciences, 8, 71.CrossRefGoogle Scholar
  7. Davies, B. & Harré, R. (1999). Positioning and personhood. In R. Harré & L. van Langenhove (Eds.), Positioning theory: Moral contexts of intentional action (pp. 32–51). Blackwell: Oxford.Google Scholar
  8. Foucault, M. (1982). The subject and power. Critical Inquiry, 8(4), 777–795.CrossRefGoogle Scholar
  9. Gee, J. P. (2011). An introduction to discourse analysis: Theory and method (Third edition). New York, NY: Routledge.Google Scholar
  10. Geertz, C. (1974). Myth, symbol and culture. New York: W.W. Norton & Company.Google Scholar
  11. Harré, R. (2012). Positioning theory: Moral dimensions of social-cultural psychology. In J. Valsiner (Ed.), The Oxford handbook of culture and psychology (pp. 191–206). New York: Oxford University Press.Google Scholar
  12. Harré, R. & Moghaddam, F. M. (2003). Introduction: The self and others in traditional psychology and in positioning theory. In R. Harré & F. M. Moghaddam (Eds.). The self and others: Positioning individuals and groups in personal, political, and cultural contexts (pp. 1–11). Westport, CT: Praeger.Google Scholar
  13. Harré, R. & van Langenhove, L. (Eds.) (1999). Positioning theory: Moral contexts of intentional action. Blackwell, Oxford.Google Scholar
  14. Herbel-Eisenmann, B., Wagner, D., Johnson, K., Suh, H., & Figueras, H. (2015). Positioning in mathematics education: revelations on an imported theory. Educational Studies in Mathematics, 89(2), 185–204.CrossRefGoogle Scholar
  15. Herbel-Eisenmann, B., Sinclair, N., Chval, K. B., Clements, D. H., Civil, M., Pape, S. J., Stephan, M., Wanko, J. J., & Wilkerson, T. L. (2016). Positioning mathematics education researchers to influence storylines. Journal for Research in Mathematics Education, 47(2), 102–117.CrossRefGoogle Scholar
  16. Kollosche, D. (2018). Social functions of mathematics education: A framework for socio-political studies. Educational Studies in Mathematics, 98(3), 287–303CrossRefGoogle Scholar
  17. Lange T., & Meaney T. (2018). Policy production through the media: The case of more mathematics in early childhood education. In Jurdak M., Vithal R. (eds.) Sociopolitical dimensions of mathematics education. ICME-13 monographs. Dordrecht: Springer.Google Scholar
  18. McFeetors, P. J., & McGarvey, L. M. (2018). Public perceptions of the basic skills crisis. Canadian Journal of Science, Mathematics and Technology Education.  https://doi.org/10.1007/s42330-018-0016-1
  19. McGarvey, L. (2015). Basic facts about PISA 2012. In S. Oesterle & D. Allan (Eds.). Proceedings of the 2014 Annual Meeting Canadian Mathematics Education Study Group / Groupe Canadien d’Étude en Didactique des Mathématiques (pp. 57–63). Edmonton, AB: CMESG/GCEDM.Google Scholar
  20. Mendick, H. (2005). A beautiful myth? The gendering of being/doing 'good at maths'. Gender and Education, 17(2), 203–219.CrossRefGoogle Scholar
  21. OECD. (2013) PISA 2012 Results: What students know and can do – Student performance in mathematics, reading and science (Volume I). Pisa, OECD Publishing.Google Scholar
  22. Reid, D. (2015). What have we not been hearing about PISA? In S. Oesterle & D. Allan (Eds.). Proceedings of the 2014 Annual Meeting Canadian Mathematics Education Study Group / Groupe Canadien d’Étude en Didactique des Mathématiques (pp. 65–69). Edmonton, AB: CMESG/GCEDM.Google Scholar
  23. Rodney, S., Rouleau, A., & Sinclair, N. (2016). A tale of two metaphors: Storylines about mathematics education in Canadian national media. Canadian Journal of Science, Mathematics and Technology Education, 16(4), 389–401.CrossRefGoogle Scholar
  24. Savard, A. (2015). The performance of Québec students on PISA’s mathematics assessment: What’s going on in Québec? In S. Oesterle & D. Allan (Eds.). Proceedings of the 2014 Annual Meeting Canadian Mathematics Education Study Group / Groupe Canadien d’Étude en Didactique des Mathématiques (pp. 71–75). Edmonton, AB: CMESG/GCEDM.Google Scholar
  25. United Nations (2015). Resolution adopted by the General Assembly on 25 September 2015. New York: United Nations. Available: http://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf. Accessed 1 Dec 2018.
  26. van Langenhove, L., & Harré, R. (1999). Introducing positioning theory. In R. Harré, & L. van Langenhove (Eds.), Positioning theory: Moral contexts of intentional action (pp. 14–31). Blackwell: Oxford.Google Scholar
  27. Wagner, D. (2007). Students’ critical awareness of voice and agency in mathematics classroom discourse. Mathematical Thinking and Learning, 9(1), 31–50.Google Scholar
  28. Wagner, D. (2015). PISA reporting: Not saying what PISA is and does. In S. Oesterle & D. Allan (Eds.), Proceedings of the 2014 Annual Meeting Canadian Mathematics Education Study Group / Groupe Canadien d’Étude en Didactique des Mathématiques (pp. 77–80). Edmonton: CMESG/GCEDM.Google Scholar
  29. Wagner, D., & Herbel-Eisenmann, B. (2009). Re-mythologizing mathematics through attention to classroom positioning. Educational Studies in Mathematics, 72(1), 1–15.CrossRefGoogle Scholar
  30. Wagner, D., & Herbel-Eisenmann, B. (2015). Positioning positioning theory in its application to mathematics education research. Positioning Theory Symposium, Bruges, Belgium. Paper available at: http://davewagner.ca//articles/Wagner_Herbel-Eisenmann_2015_positioning.pdf. Accessed 1 Dec 2018.

Copyright information

© Ontario Institute for Educat. Studies 2019

Authors and Affiliations

  1. 1.Faculty of EducationUniversity of New BrunswickFrederictonCanada

Personalised recommendations