Advertisement

Water Waves

, Volume 1, Issue 1, pp 71–130 | Cite as

Rigorous Asymptotic Models of Water Waves

  • C. H. Aurther
  • Rafael Granero-Belinchón
  • Steve ShkollerEmail author
  • Jon Wilkening
Original Article
  • 95 Downloads

Abstract

We develop a rigorous asymptotic derivation of two mathematical models of water waves that capture the full nonlinearity of the Euler equations up to quadratic and cubic interactions, respectively. Specifically, letting \( \epsilon \) denote an asymptotic parameter denoting the steepness of the water wave, we use a Stokes expansion in \( \epsilon \) to derive a set of linear recursion relations for the tangential component of velocity, the stream function, and the water wave parameterization. The solution of the water wave system is obtained as an infinite sum of solutions to linear problems at each \(O( \epsilon ^k)\) level, and truncation of this series leads to our two asymptotic models, which we call the quadratic and cubic h-models. These models are well posed in spaces of analytic functions. We prove error bounds for the difference between solutions of the h-models and the water wave system. We also show that the Craig–Sulem models of water waves can be obtained from our asymptotic procedure. We then develop a novel numerical algorithm to solve the quadratic and cubic h-models as well as the full water wave system. For three very different examples, we show that the agreement between the model equations and the water wave solution is excellent, even when the wave steepness is quite large. We also present a numerical example of corner formation for water waves.

Keywords

Water waves Asymptotic models Convergence Well-posedness Numerical simulations 

Notes

Acknowledgements

We thank the anonymous referees for their numerous suggestions that have improved the exposition of this article. JW was supported by NSF DMS-1716560 and by the Department of Energy, Office of Science, Applied Scientific Computing Research, under award number DE-AC02-05CH11231. RGB was partially funded by University of Cantabria and the Department of Mathematics, Statistics and Computation. SS was supported by NSF DMS-1301380, the Department of Energy, Advanced Simulation and Computing (ASC) Program, and by DTRA HDTRA11810022.

References

  1. 1.
    Airy, G.B.: Tides and waves. In: Rose, H.J. et al (eds.) Encyclopedia Metropolitana (1817–1845), London (1841)Google Scholar
  2. 2.
    Akers, B., Milewski, P.A.: Dynamics of three-dimensional gravity-capillary solitary waves in deep water. SIAM J. Appl. Math. 70(7), 2390–2408 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Akers, B., Nicholls, D.P.: Traveling waves in deep water with gravity and surface tension. SIAM J. Appl. Math. 70(7), 2373–2389 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Akers, B., Nicholls, D.P.: Spectral stability of deep two-dimensional gravity water waves: repeated eigenvalues. SIAM J. Appl. Math. 72(2), 689–711 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Akers, B., Nicholls, D.P.: The spectrum of finite depth water waves. Eur. J. Mech. B Fluids 46, 181–189 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Alazard, T., Burq, N., Zuily, C.: On the cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Alazard, T., Delort, J.-M.: Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Éc. Norm. Supér. (4) 48(5), 1149–1238 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171(3), 485–541 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Ambrose, D.M., Bona, J.L., Nicholls, D.P.: On ill-posedness of truncated series models for water waves. Proc. R. Soc. A 470(2166), 20130849 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ambrose, D.M., Wilkening, J.: Computation of symmetric, time-periodic solutions of the vortex sheet with surface tension. Proc. Natl. Acad. Sci. 107(8), 3361–3366 (2010)Google Scholar
  11. 11.
    Ambrose, D.M., Wilkening, J.: Dependence of time-periodic votex sheets with surface tension on mean vortex sheet strength. Procedia IUTAM 11, 15–22 (2014)Google Scholar
  12. 12.
    Ambrose, D.M., Masmoudi, N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315 (2005)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Amick, C.J., Toland, J.F.: The semi-analytic theory of standing waves. Proc. R. Soc. Lond. A 411, 123–138 (1987)zbMATHGoogle Scholar
  14. 14.
    Beale, J.T., Hou, T.Y., Lowengrub, J.: Convergence of a boundary integral method for water waves. SIAM J. Numer. Anal. 33(5), 1797–1843 (1996)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Benney, D.J., Luke, J.C.: On the interactions of permanent waves of finite amplitude. Stud. Appl. Math. 43, 309–313 (1964)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Berger, K.M., Milewski, P.A.: Simulation of wave interactions and turbulence in one-dimensional water waves. SIAM J. Appl. Math. 63(4), 1121–1140 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathématiques Pures et Appliquées 17, 55–108 (1872)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Boussinesq, J.: Essai sur la théorie des eaux courantes. Imprimerie nationale (1877)Google Scholar
  19. 19.
    Castro, A., Córdoba, D., Fefferman, C.L., Gancedo, F., Gómez-Serrano, J.: Splash singularity for water waves. Proc. Natl. Acad. Sci. 109(3), 733–738 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Finite time singularities for the free boundary incompressible Euler equations. Ann. Math. (2) 178(3), 1061–1134 (2013)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Chen, J., Wilkening, J.: Arbitrary-order exponential time differencing schemes via Chebyshev moments of exponential functions (2019) (in preparation) Google Scholar
  22. 22.
    Cheng, C.H.A., Coutand, D., Shkoller, S.: On the limit as the density ratio tends to zero for two perfect incompressible fluids separated by a surface of discontinuity. Commun. Partial Differ. Equ. 35(5), 817–845 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Cheng, C.H.A., Shkoller, S.: Solvability and regularity for an elliptic system prescribing the curl, divergence, and partial trace of a vector field on Sobolev-class domains. J. Math. Fluid Mech. 19(3), 375–422 (2017)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Cheng, C.-H.A., Coutand, D., Shkoller, S.: On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity. Commun. Pure Appl. Math. 61(12), 1715–1752 (2008)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Choi, W.: Nonlinear evolution equations for two-dimensional surface waves in a fluid of finite depth. J. Fluid Mech. 295, 381 (1995)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Coutand, D., Shkoller, S.: On the finite-time splash and splat singularities for the 3-d free-surface euler equations. Commun. Math. Phys. 325(1), 143–183 (2014)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Coutand, D., Shkoller, S.: On the impossibility of finite-time splash singularities for vortex sheets. Arch. Ration. Mech. Anal. 221(2), 987–1033 (2016)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108(1), 73–83 (1993)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Deng, Y., Ionescu, A.D., Pausader, B., Pusateri, F.: Global solutions of the gravity-capillary water wave system in 3 dimensions. Acta Math. 219, 213–402 (2017)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Dyachenko, A.L., Kuznetsov, E.A., Spector, M.D., Zakharov, V.E.: Analytic description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221, 73–79 (1996)Google Scholar
  34. 34.
    Dyachenko, A.L., Zakharov, V.E., Kuznetsov, E.A.: Nonlinear dynamics on the free surface of an ideal fluid. Plasma Phys. Rep. 22, 916–928 (1996)Google Scholar
  35. 35.
    Fefferman, C., Ionescu, A.D., Lie, V.: On the absence of splash singularities in the case of two-fluid interfaces. Duke Math. J. 165(3), 417–462 (2016)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Folland, G.B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  37. 37.
    Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. (2) 175, 691–754 (2012)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Granero-Belinchón, R., Shkoller, S.: A model for Rayleigh–Taylor mixing and interface turnover. Multiscale Model. Simul. 15, 274–308 (2017)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin (2000)zbMATHGoogle Scholar
  40. 40.
    Hou, T.Y., Li, R.: Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226, 379–397 (2007)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114, 312–338 (1994)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: The long-time motion of vortex sheets with surface tension. Phys. Fluids 9, 1933–1954 (1997)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: Boundary integral methods for multicomponent fluids and multiphase materials. J. Comput. Phys. 169, 302–362 (2001)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Hunter, J.K., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346(2), 483–552 (2016)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. II: global solutions (arXiv preprint). arXiv:1404.7583 (2014)
  46. 46.
    Ionescu, A.D., Pusateri, F.: Global solutions for the gravity water waves system in 2d. Invent. Math. 199(3), 653–804 (2015)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Iooss, G., Plotnikov, P.I., Toland, J.F.: Standing waves on an infinitely deep perfect fluid under gravity. Arch. Ration. Mech. Anal. 177, 367–478 (2005)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Kassam, A.-K., Trefethen, L.N.: Fourth-order time-stepping for stiff pdes. SIAM J. Sci. Comput. 26, 1214–1233 (2006)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Knightly, G.: On a class of global solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 21(3), 211–245 (1966)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Lannes, D., Bonneton, P.: Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21, 1–9 (2009)zbMATHGoogle Scholar
  52. 52.
    Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. (2) 162(1), 109–194 (2005)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Matsuno, Y.: Nonlinear evolutions of surface gravity waves on fluid of finite depth. Phys. Rev. Let. 69(4), 609–611 (1992)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Matsuno, Y.: Nonlinear evolution of surface gravity waves over an uneven bottom. J. Fluid Mech. 249, 121–133 (1993)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Matsuno, Y.: Two-dimensional evolution of surface gravity waves on a fluid of arbitrary depth. Phys. Rev. E 47(6), 4593–4596 (1993)MathSciNetGoogle Scholar
  56. 56.
    Milder, D.M.: An improved formalism for wave scattering from rough surfaces. J. Acoust. Soc. Am. 89(2), 529–541 (1991)Google Scholar
  57. 57.
    Milder, D.M., Sharp, H.T.: An improved formalism for rough-surface scattering. II: numerical trials in three dimensions. J. Acoust. Soc. Am. 91(5), 2620–2626 (1992)Google Scholar
  58. 58.
    Milewski, P.A., Vanden-Broeck, J.-M., Wang, Z.: Dynamics of steep two-dimensional gravity-capillary solitary waves. J. Fluid Mech. 664, 466–477 (2010)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Muskhelishvili, N.I.: Singular Integral Equations, 2nd edn. Dover, New York (1992)Google Scholar
  60. 60.
    Nalimov, VI.: The Cauchy–Poisson problem. Dinamika Splošn. Sredy (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami) 254, 104–210 (1974)Google Scholar
  61. 61.
    Nicholls, D.P., Reitich, F.: On analyticity of travelling water waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2057), 1283–1309 (2005)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Nicholls, D.P., Reitich, F.: Stable, high-order computation of traveling water waves in three dimensions. Eur. J. Mech. B Fluids 25(4), 406–424 (2006)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Nirenberg, L.: An abstract form of the nonlinear Cauchy–Kowalewski theorem. J. Differ. Geom. 6, 561–576 (1972)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Nishida, T.: A note on a theorem of Nirenberg. J. Differ. Geom. 12, 629–633 (1977)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Oseen, C.W.: Sur les formules de green généralisées qui se présentent dans l’hydrodynamique et sur quelquesunes de leurs applications. Acta Math. 35(1), 97–192 (1912)MathSciNetGoogle Scholar
  66. 66.
    Ovsjannikov, L.V.: Shallow-water theory foundation. Arch. Mech. 26(3), 407–422 (1974)MathSciNetGoogle Scholar
  67. 67.
    Ovsjannikov, L.V.: Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification. Appl. Methods Funct. Anal. Probl. Mech. 26, 426–437 (1976)MathSciNetGoogle Scholar
  68. 68.
    Penney, W.G., Price, A.T.: Finite periodic stationary gravity waves in a perfect liquid, part II. Philos. Trans. R. Soc. Lond. A 244, 254–284 (1952)Google Scholar
  69. 69.
    Prince, P.J., Dormand, J.R.: High order embedded Runge–Kutta formulae. J. Comput. Appl. Math. 7, 67–75 (1981)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Rayleigh, B.: On waves. Philos. Mag. 1, 257–279 (1876)zbMATHGoogle Scholar
  71. 71.
    Schneider, G., Wayne, E.C.: Justification of the NLS approximation for a quasilinear water wave model. J. Differ. Equ. 251(2), 238–269 (2011)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Schwartz, L.W., Whitney, A.K.: A semi-analytic solution for nonlinear standing waves in deep water. J. Fluid Mech. 107, 147–171 (1981)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Shatah, J., Zeng, C.: Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal. 199(2), 653–705 (2011)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Shinbrot, M.: The initial value problem for surface waves under gravity, I: the simplest case. Indiana Univ. Math. J. 25(3), 281–300 (1976)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Stanley, R.P.: Catalan Numbers. Cambridge University Press, Cambridge (2015)zbMATHGoogle Scholar
  76. 76.
    Stokes, G.G.: On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8, 441–473 (1847)Google Scholar
  77. 77.
    Sulem, C., Sulem, P.-L., Bardos, C., Frisch, U.: Finite time analyticity for the two- and three-dimensional Kelvin–Helmholtz instability. Commun. Math. Phys. 80(4), 485–516 (1981)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Tadjbakhsh, I., Keller, J.B.: Standing surface waves of finite amplitude. J. Fluid Mech. 8, 442–451 (1960)MathSciNetzbMATHGoogle Scholar
  79. 79.
    Wilkening, J.: Breakdown of self-similarity at the crests of large amplitude standing water waves. Phys. Rev. Lett 107, 184501 (2011)Google Scholar
  80. 80.
    Wilkening, J., Yu, J.: Overdetermined shooting methods for computing standing water waves with spectral accuracy. Comput. Sci. Discov. 5, 014017 (2012)Google Scholar
  81. 81.
    Sijue, W.: Well-posedness in Sobolev spaces of the full water wave problem in \(2\)-D. Invent. Math. 130(1), 39–72 (1997)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Sijue, W.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Sijue, W.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184(1), 125–220 (2011)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18(1), 49–96 (1982)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsNational Central UniversityTaoyuanTaiwan
  2. 2.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de Cantabria SantanderSantanderSpain
  3. 3.Department of MathematicsUniversity of CaliforniaDavisUSA
  4. 4.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations