Water Waves

, Volume 1, Issue 1, pp 145–215 | Cite as

Low Regularity Solutions for Gravity Water Waves

  • Albert AiEmail author
Original Article


We prove local well-posedness for the gravity water waves equations without surface tension, with initial velocity field in \(H^s\), \(s > \frac{d}{2} + 1 - \mu \), where \(\mu = \frac{1}{10}\) in the case \(d = 1\) and \(\mu = \frac{1}{5}\) in the case \(d \ge 2\), extending previous results of Alazard–Burq–Zuily. The improvement primarily arises in two areas. First, we perform an improved analysis of the regularity of the change of variables from Eulerian to Lagrangian coordinates. Second, we perform a time-interval length optimization of the localized Strichartz estimates.


Gravity water waves Strichartz estimates Local smoothing estimates Low regularity solutions Wave packet parametrix 



The author would like to thank his advisor, Daniel Tataru, for introducing him to this research area and for many helpful discussions.


  1. 1.
    Alazard, T., Burq, N., Zuily, C.: On the water-wave equations with surface tension. Duke Math. J. 158(3), 413–499 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alazard, T., Burq, N., Zuily, C.: Strichartz estimates for water waves. Ann. Sci. Ec. Norm. Supér. (4) 44(5), 855–903 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alazard, T., Burq, N., Zuily, C.: The water-wave equations: from Zakharov to Euler. In: Studies in Phase Space Analysis with Applications to PDEs. Springer, New York, pp 1–20 (2013)Google Scholar
  4. 4.
    Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alazard, T., Burq, N., Zuily, C.: Strichartz estimates and the Cauchy problem for the gravity water waves equations. Mem. AMS (to appear) (2014)Google Scholar
  6. 6.
    Bahouri, H., Chemin, J.-Y.: Équations d’ondes quasilinéaires et estimations de Strichartz. Am. J. Math. 121(6), 1337–1377 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Christianson, H., Hur, V.M., Staffilani, G.: Strichartz estimates for the water-wave problem with surface tension. Commun. Partial Differ. Equ. 35(12), 2195–2252 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108(1), 73–83 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    De Poyferré, T., Nguyen, Q.-H.: A paradifferential reduction for the gravity-capillary waves system at low regularity and applications. arXiv preprint: arXiv:1508.00326 (2015)
  11. 11.
    de Poyferre, T., Nguyen, Q.-H.: Strichartz estimates and local existence for the gravity-capillary waves with non-Lipschitz initial velocity. J. Differ. Equ. 261(1), 396–438 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ebin, D.G.: The equations of motion of a perfect fluid with free boundary are not well posed. Commun. Partial Differ. Equ. 12(10), 1175–1201 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Harrop-Griffiths, B., Ifrim, M., Tataru, D.: Finite depth gravity water waves in holomorphic coordinates. Ann. PDE 3(1), 4 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hunter, J.K., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346(2), 483–552 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Koch, H., Tataru, D.: Dispersive estimates for principally normal pseudodifferential operators. Commun. Pure Appl. Math. 58(2), 217–284 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lannes, D.: The water waves problem. In: Mathematical Surveys and Monographs, p. 188 (2013)Google Scholar
  18. 18.
    Métivier, G.: Para-differential calculus and applications to the Cauchy problem for nonlinear systems. In: Ennio de Giorgi Mathematical Research Center Publication, Edizione della Normale (2008)Google Scholar
  19. 19.
    Marzuola, J., Metcalfe, J., Tataru, D.: Wave packet parametrices for evolutions governed by PDO’s with rough symbols. Proc. Am. Math. Soc. 136(2), 597–604 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nguyen, Q.-H.: Sharp Strichartz estimates for water waves systems. arXiv preprint: arXiv:1512.02359 (2015)
  21. 21.
    Nguyen, H.Q.: A sharp Cauchy theory for the 2D gravity-capillary waves. In: Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Elsevier, London (2017)Google Scholar
  22. 22.
    Sijue, W.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sijue, W.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Smith, H.F., Tataru, D.: Sharp local well-posedness results for the nonlinear wave equation. Ann. Math. 291–366 (2005)Google Scholar
  25. 25.
    Tataru, D.: Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Am. J. Math. 122(2), 349–376 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients, II. Am. J. Math. 123(3), 385–423 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients III. J. Am. Math. Soc. 15(2), 419–442 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Tataru, D.: Phase space transforms and microlocal analysis. Phase Space Anal. Partial Differ. Equ. 2, 505–524 (2004)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Taylor, M.E: Pseudodifferential operators and linear PDE. In: Pseudodifferential Operators and Nonlinear PDE. Springer, New York (1991)Google Scholar
  30. 30.
    Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of California, BerkeleyBerkeleyUSA

Personalised recommendations