Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Radiation effects on the performance of flexible perovskite solar cells for space applications

Abstract

Solar cells for space applications are required to be tolerant to harsh environmental conditions. Especially, tolerance against radiation and charged particles is mandatory. Here we study the effect of low-energy (<< 1 MeV) proton radiation to evaluate the radiation tolerance of flexible perovskite solar cells (PSCs). Low-energy protons are more likely to be stopped in the shallower regions of solar cells, thereby causing greater performance degradation than high-energy protons. Flexible PSCs with layer sequence PET/ITO/PEDOT:PSS/perovskite/PCBM/BCP/metal were fabricated and were irradiated with 100 keV protons (fluence from ~ 3 × 1010 to ~ 3 × 1012 protons/cm2, equating several years in space). Flexible PSCs exhibited a good radiation tolerance and did not show color center formation, revealing their outstanding resistance against low-energy proton radiation. This can be credited to the combined effect of intrinsically large carrier diffusion length exceeding the thin absorber film thickness and the defect tolerance of perovskite crystals.

TOC graphics

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    J.J. Loferski, Rev. Phys. Appl. 1, 221 (1966)

  2. 2.

    T.V. Torchynska, G. Polupan, S. Sc, Superf. y Vacío17, 21 (2004)

  3. 3.

    D.A. Lamb, C.I. Underwood, V. Barrioz, R. Gwilliam, J. Hall, M.A. Baker, S.J.C. Irvine, Prog. Photovolt. Res. Appl., 1 (2017)

  4. 4.

    S.G.F. Bailey, J. Dennis, Prog. Photovoltaics Res. Appl. 6, 1 (1998)

  5. 5.

    R. Wang, Z. Guo, G. Wang, Sol. Energy Mater. Sol. Cells 90, 1052 (2006)

  6. 6.

    R. Wang, Z. Feng, Y. Liu, M. Lu, Plasma Sci. Technol. 14, 647 (2012)

  7. 7.

    J. Kuendig, M. Goetz, A. Shah, L. Gerlach, E. Fernandez, Sol. Energy Mater. Sol. Cells 79, 425 (2003)

  8. 8.

    A.D. Verkerk, J.K. Rath, R.E.I. Schropp, Energy Procedia 2, 221 (2010)

  9. 9.

    Y. Morita, T. Ohshima, I. Nashiyama, Y. Yamamoto, O. Kawasaki, S. Matsuda, J. Appl. Phys. 81, 6491 (1997)

  10. 10.

    T. Sumita, M. Imaizumi, S. Matsuda, T. Ohshima, A. Ohi, H. Itoh, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 448–451 (2003)

  11. 11.

    M. Imaizumi, T. Nakamura, T. Takamoto, T. Ohshima, M. Tajima, Prog. Photovolt. Res. Appl. 25, 161 (2017)

  12. 12.

    S. Krishnan, G. Sanjeev, M. Pattabi, X. Mathew, Sol. Energy Mater. Sol. Cells 93, 2 (2009)

  13. 13.

    F. Lang, N.H. Nickel, J. Bundesmann, S. Seidel, A. Denker, S. Albrecht, V.V. Brus, J. Rappich, B. Rech, G. Landi, H.C. Neitzert, Adv. Mater. 28, 8726 (2016)

  14. 14.

    V.V. Brus, F. Lang, J. Bundesmann, S. Seidel, A. Denker, B. Rech, G. Landi, H.C. Neitzert, J. Rappich, N.H. Nickel, Adv. Electron. Mater. 3, 1600438 (2017)

  15. 15.

    N. Chandrasekaran, T. Soga, Y. Inuzuka, H. Taguchi, M. Imaizumi, T. Ohshima, T. Jimbo, Jpn. J. Appl. Phys. 43, 10 (2004)

  16. 16.

    R. Wang, J. Yang, Q. Fan, Y. Xu, X. Sun, Pan Tao Ti Hsueh Pao/Chinese J. Semicond. 26, 1558 (2005)

  17. 17.

    S. Sato, K. Beernink, T. Ohshima, in Proc. 10th Int. Work. Radiat. Eff. Semicond. Devices Sp. Appl., 2012, pp. 44–47

  18. 18.

    S.I. Maximenko, M.P. Lumb, R. Hoheisel, M. Gonzalez, D.A. Scheiman, S.R. Messenger, T.N.D. Tibbits, M. Imaizumi, T. Ohshima, S.I. Sato, P.P. Jenkins, R.J. Walters, J. Appl. Phys. 118, 245705 (2015)

  19. 19.

    M. Paulescu, D. Vizman, M. Lascu, R. Negrila, M. Stef, in AIP Conf. Proc., 2017, p. 1796

  20. 20.

    M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.H. Ho-Baillie, Prog. Photovolt. Res. Appl. 25, 668 (2017)

  21. 21.

    National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiencies, 2019, https://www.nrel.gov/pv/cell-efficiency.html

  22. 22.

    C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, Adv. Mater. 26, 1584 (2014)

  23. 23.

    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science (80-. )342, 341 (2013)

  24. 24.

    J.B. You, Z.R. Hong, Y. Yang, Q. Chen, M. Cai, T.B. Song, C.C. Chen, S.R. Lu, Y.S. Liu, H.P. Zhou, Y. Yang, ACS Nano 8, 1674 (2014)

  25. 25.

    D. Zhao, M. Sexton, H.‐Y. Park, G. Baure, J.C. Nino, F. So, Adv. Energy Mater5, 1401855 (2014)

  26. 26.

    T.M. Schmidt, T.T. Larsen‐Olsen, J.E. Carlé, D. Angmo, F.C. Krebs, Adv. Energy Mater.5, 1500569 (2015)

  27. 27.

    Y. Zhang, Z. Wu, P. Li, L.K. Ono, Y. Qi, J. Zhou, H. Shen, C. Surya, Z. Zheng, Adv. Energy Mater.8, 1701569 (2017)

  28. 28.

    H. Zhang, H. Wang, H. Zhu, C.‐C. Chueh, W. Chen, S. Yang, A.K.‐Y. Jen, Adv. Energy Mater0, 1702762 (2018)

  29. 29.

    Z. Yang, C.‐C. Chueh, F. Zuo, J.H. Kim, P.‐W. Liang, A.K.‐Y. Jen,Adv. Energy Mater.2015, 5, 1500328

  30. 30.

    J. Lee, J. Kim, C.‐L. Lee, G. Kim, T. K. Kim, H. Back, S. Jung, K. Yu, S. Hong, S. Lee, S. Kim, S. Jeong, H. Kang, K. Lee, Adv. Energy Mater.7, 1700226 (2017)

  31. 31.

    M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D.H. Apaydin, H. Groiss, M.C. Scharber, M.S. White, N.S. Sariciftci, S. Bauer, Nat. Mater. 14, 1032 (2015)

  32. 32.

    J. Jean, A. Wang, V. Bulović, Org. Electron. physics, Mater. Appl 31, 120 (2016)

  33. 33.

    I. Cardinaletti, T. Vangerven, S. Nagels, R. Cornelissen, D. Schreurs, J. Hruby, J. Vodnik, D. Devisscher, J. Kesters, J. D’Haen, A. Franquet, V. Spampinato, T. Conard, W. Maes, W. Deferme, J.V. Manca, Sol. Energy Mater. Sol. Cells 182, 121–127 (2018)

  34. 34.

    J. Huang, M. D. Kelzenberg, P. Espinet-González, C. Mann, D. Walker, A. Naqavi, N. Vaidya, E. Warmann, H. A. Atwater, in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, pp. 1248–1252

  35. 35.

    G. Rybicki, I. Weinberg, D. Scheiman, C. Vargas-Aburto, R. Uribe, Prog. Photovolt. Res. Appl. 4, 101 (1996)

  36. 36.

    S. Kanaya, G.M. Kim, M. Ikegami, T. Miyasaka, K. Suzuki, Y. Miyazawa, H. Toyota, K. Osonoe, T. Yamamoto, K. Hirose, Proton Irradiation Tolerance of High-Efficiency Perovskite Absorbers for Space Applications. The Journal of Physical Chemistry Letters 10, 6990–6995 (2019)

  37. 37.

    J. Barbé, D. Hughes, Z. Wei, A. Pockett, H.K.H. Lee, K.C. Heasman, M.J. Carnie, T.M. Watson, W.C. Tsoi, Solar RRL 3, 1900219 (2019)

  38. 38.

    M. Saito, F. Nishiyama, K. Kobayashi, S. Nagata, K. Takahiro, Nucl. Instruments Methods Phys. Res. Sect. B 268, 2918 (2010)

  39. 39.

    Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun., 5 (2014). https://doi.org/10.1038/ncomms6784

  40. 40.

    F. Di Giacomo, A. Fakharuddin, R. Jose, T.M. Brown, Energy Environ. Sci. 9, 3007 (2016)

  41. 41.

    C. Wang, C. Xiao, Y. Yu, D. Zhao, R.A. Awni, C.R. Grice, K. Ghimire, I. Constantinou, W. Liao, A. J. Cimaroli, P. Liu, J. Chen, N.J. Podraza, C.‐S. Jiang, M.M. Al‐Jassim, X. Zhao, Y. Yan, Adv. Energy Mater7, 1700414 (2017)

  42. 42.

    T. Liu, K. Chen, Q. Hu, R. Zhu, Q. Gong, Adv. Energy Mater.6, 1600457 (2016)

  43. 43.

    W. Yan, S. Ye, Y. Li, W. Sun, H. Rao, Z. Liu, Z. Bian, C. Huang, Adv. Energy Mater.6, 1600474 (2016)

  44. 44.

    K.L. Gardner, J.G. Tait, T. Merckx, W. Qiu, U.W. Paetzold, L. Kootstra, M. Jaysankar, R. Gehlhaar, D. Cheyns, P. Heremans, J. Poortmans, Adv. Energy Mater., 6 (2016). https://doi.org/10.1002/aenm.201600386

  45. 45.

    J. Ziegler, “http://www.srim.org/,” n.d.

  46. 46.

    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013)

  47. 47.

    F. Machui, S. Rathgeber, N. Li, T. Ameri, C.J. Brabec, J. Mater. Chem. 22, 15570 (2012)

  48. 48.

    A. Elschner, Sol. Energy Mater. Sol. Cells 95, 1333 (2011)

  49. 49.

    Y. Miyazawa, M. Ikegami, H.-W. Chen, T. Ohshima, M. Imaizumi, K. Hirose, T. Miyasaka, iScience2, 148 (2018)

  50. 50.

    T. Sumita, M. Imaizumi, S. Matsuda, T. Ohshima, A. Ohi, T. Kamiya, 3rd World Conf. onPhotovoltaic Energy Conversion, 2003. Proc, vol 1 (2003), p. 689

  51. 51.

    Y. Miyazawa, M. Ikegami, T. Miyasaka, T. Ohshima, M. Imaizumi, K. Hirose, IEEE 42nd Photovolt. Spec. Conf. 2015, 1 (2015)

  52. 52.

    H.C. Neitzert, P. Spinillo, S. Bellone, G.D. Licciardi, M. Tucci, F. Roca, L. Gialanella, M. Romano, Sol. Energy Mater. Sol. Cells 83, 435 (2004)

  53. 53.

    S. Kawakita, M. Imaizumi, M. Yamaguchi, K. Kushiya, T. Ohshima, H. Itoh, S. Matsuda, Japanese J. Appl. Physics, Part 2 Lett41, L797 (2002)

  54. 54.

    R. A. Knief, 1981 Nuclear energy technology. Theory and practice of commercial nuclear power. United States: Hemisphere Publishing Corporation

  55. 55.

    F. Bebensee, J. Zhu, J.H. Baricuatro, J.A. Farmer, Y. Bai, H.-P. Steinrück, C.T. Campbell, J.M. Gottfried, Langmuir 26, 9632 (2010)

  56. 56.

    R.A. Street, J.E. Northrup, B.S. Krusor, Phys. Rev. B - Condens. Matter Mater. Phys 85, 1 (2012)

  57. 57.

    W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, Energy Environ. Sci. 8, 995 (2015)

  58. 58.

    S. Van Reenen, M. Kemerink, H.J. Snaith, J. Phys. Chem. Lett. 6, 3808 (2015)

  59. 59.

    M.F. Bartusiak, J. Becher, Appl. Opt. 18, 3342 (1979)

  60. 60.

    A.I. Gusarov, D. Doyle, A. Hermanne, F. Berghmans, M. Fruit, G. Ulbrich, M. Blondel, Appl. Opt. 41, 678 (2002)

Download references

Acknowledgments

We are grateful to Wroclaw Technology Park for their support.

Funding

Project co-financed from European Regional Development Fund within the Smart Growth Operational Program under Priority I: Support for conducting R&D works by enterprises, Submeasure 1.1.1, “Fast track” SMEs. The program implementing agency is the National Centre for Research and Development (grant agreement no. POIR.01.01.01-00-0090/15-00).

Author information

Olga Malinkiewicz and Mitsuru Imaizumi developed the concept and all authors contributed to the experimental work as well as writing of this manuscript.

Correspondence to Olga Malinkiewicz.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 266 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malinkiewicz, O., Imaizumi, M., Sapkota, S.B. et al. Radiation effects on the performance of flexible perovskite solar cells for space applications. emergent mater. (2020). https://doi.org/10.1007/s42247-020-00071-8

Download citation